Question #86543
Let T:R^3 be defined by
T(x1,x2,x3)=( x1+x3,x3,x2-x3).
Is T invertible? If yes,find a rule for T^-1 like the one which defines T. If T is not invertible, check whether T satisfies Cayley-Hamiltion theorem.
1
Expert's answer
2019-03-20T11:47:58-0400

Solution:


Let e1=(1,0,0)e_1 = (1, 0, 0), e2=(0,1,0)e_2 = (0, 1, 0), e3=(0,0,1)e_3 = (0, 0, 1) be the natural basis of R3\R^3. We have T(e1)=e1T \left( e_1 \right) = e_1, T(e2)=e3T \left( e_2 \right) = e_3, and T(e3)=e1+e2e3T \left( e_3 \right) = e_1 + e_2 - e_3. The matrix of this transformation with respect to the introduced basis is then

(101001011).\begin{pmatrix} 1 & 0 & 1 \\ 0 & 0 & 1 \\ 0 & 1 & -1 \end{pmatrix} \, .

This matrix is non-degenerate (its determinant is equal to -1), therefore, T is invertible. To find the inverse, we observe that T1(e1)=e1T^{-1} \left( e_1 \right) = e_1, T1(e3)=e2T^{-1} \left( e_3 \right) = e_2, and T1(e1+e2e3)=e3T^{-1} \left( e_1 + e_2 - e_3 \right) = e_3. From the last equation, we have T1(e2)=e3T1(e1)+T1(e3)=e1+e2+e3T^{-1} \left( e_2 \right) = e_3 - T^{-1} \left( e_1 \right) + T^{-1} \left( e_3 \right) = - e_1 + e_2 + e_3. Then, since (x1,x2,x3)=x1e1+x2e2+x3e3\left( x_1 , x_2 , x_3 \right) = x_1 e_1 + x_2 e_2 + x_3 e_3, we obtain

T1(x1,x2,x3)=T1(x1e1+x2e2+x3e3)=x1T1(e1)+x2T1(e2)+x3T1(e3)=x1e1+x2(e1+e2+e3)+x3e2=(x1x2,x2+x3,x2).T^{-1} \left( x_1 , x_2 , x_3 \right) = T^{-1} \left( x_1 e_1 + x_2 e_2 + x_3 e_3 \right) \\ {} = x_1 T^{-1} \left( e_1 \right) + x_2 T^{-1} \left( e_2 \right) + x_3 T^{-1} \left( e_3 \right) \\ {} = x_1 e_1 + x_2 \left( - e_1 + e_2 + e_3 \right) + x_3 e_2 \\ {} = \left( x_1 - x_2 , x_2 + x_3 , x_2 \right) \, .

Answer: T is invertible, with the rule T1(x1,x2,x3)=(x1x2,x2+x3,x2)T^{-1} \left( x_1 , x_2 , x_3 \right) = \left( x_1 - x_2 , x_2 + x_3 , x_2 \right).


Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

No comments. Be the first!
LATEST TUTORIALS
APPROVED BY CLIENTS