f(x,y,z)=−x2+y2+z2−4xy−4xz The matrix of the quadratic form is
A=⎝⎛−1−2−2−210−201⎠⎞ The characteristic equation is
∣∣−1−λ−2−2−21−λ0−201−λ∣∣=0 Hence
(1−λ)(λ2−9)=0λ1=1,λ2=3,λ3=−3 Thus, the orthogonal canonical reduction is
Q=(x′y′z′)∗⎝⎛10003000−3⎠⎞∗⎝⎛x′y′z′⎠⎞=(x′)2+3(y′)2−3(z′)2Find eigenvectors:
λ1=1⎝⎛−2−2−2−200−200⎠⎞∗⎝⎛v1v2v3⎠⎞=⎝⎛000⎠⎞⎝⎛100010010⎠⎞∗⎝⎛v1v2v3⎠⎞=⎝⎛000⎠⎞v=⎝⎛0−11⎠⎞The principal axis is
21⎝⎛0−11⎠⎞λ2=3⎝⎛−4−2−2−2−20−20−2⎠⎞∗⎝⎛v1v2v3⎠⎞=⎝⎛000⎠⎞⎝⎛1000101−10⎠⎞∗⎝⎛v1v2v3⎠⎞=⎝⎛000⎠⎞v=⎝⎛−111⎠⎞ The principal axis is
31⎝⎛−111⎠⎞λ3=−3⎝⎛2−2−2−240−204⎠⎞∗⎝⎛v1v2v3⎠⎞=⎝⎛000⎠⎞⎝⎛100010−2−10⎠⎞∗⎝⎛v1v2v3⎠⎞=⎝⎛000⎠⎞v=⎝⎛211⎠⎞ The principal axis is
61⎝⎛211⎠⎞
Comments