Question #86544
Find the orthogonal canonical reduction of the quadratic form -x^2+y^2+z^2-4xy-4xz.
Also, find it's principal axes.
1
Expert's answer
2019-03-21T10:01:24-0400
f(x,y,z)=x2+y2+z24xy4xzf(x, y, z)=-x^2+y^2+z^2-4xy-4xz

The matrix of the quadratic form is


A=(122210201)A=\begin{pmatrix} -1 & -2 & -2 \\ -2 & 1 & 0 \\ -2 & 0 &1 \end{pmatrix}

The characteristic equation is


1λ2221λ0201λ=0\begin{vmatrix} -1-\lambda & -2 & -2 \\ -2 & 1-\lambda & 0 \\ -2 & 0 & 1-\lambda \end{vmatrix}=0

Hence


(1λ)(λ29)=0(1-\lambda)({\lambda}^2-9)=0λ1=1,λ2=3,λ3=3\lambda_1=1, \lambda_2=3, \lambda_3=-3

Thus, the orthogonal canonical reduction is


Q=(xyz)(100030003)(xyz)=(x)2+3(y)23(z)2Q=\begin{pmatrix} x' & y' & z' \\ \end{pmatrix}*\begin{pmatrix} 1 & 0 & 0 \\ 0 & 3 & 0 \\ 0 & 0 &-3 \end{pmatrix}*\begin{pmatrix} x' \\ y' \\ z' \end{pmatrix}=(x')^2+3(y')^2-3(z')^2

Find eigenvectors:


λ1=1\lambda_1=1(222200200)(v1v2v3)=(000)\begin{pmatrix} -2 & -2 & -2 \\ -2 & 0 & 0 \\ -2 & 0 &0 \end{pmatrix}*\begin{pmatrix} v_1 \\ v_2 \\ v_3 \end{pmatrix}=\begin{pmatrix} 0 \\ 0 \\ 0 \end{pmatrix}(100011000)(v1v2v3)=(000)\begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 1 \\ 0 & 0 &0 \end{pmatrix}*\begin{pmatrix} v_1 \\ v_2 \\ v_3 \end{pmatrix}=\begin{pmatrix} 0 \\ 0 \\ 0 \end{pmatrix}v=(011)v=\begin{pmatrix} 0 \\ -1 \\ 1 \end{pmatrix}

The principal axis is


12(011){1 \over \sqrt{2}}\begin{pmatrix} 0 \\ -1 \\ 1 \end{pmatrix}λ2=3\lambda_2=3(422220202)(v1v2v3)=(000)\begin{pmatrix} -4 & -2 & -2 \\ -2 & -2 & 0 \\ -2 & 0 &-2 \end{pmatrix}*\begin{pmatrix} v_1 \\ v_2 \\ v_3 \end{pmatrix}=\begin{pmatrix} 0 \\ 0 \\ 0 \end{pmatrix}(101011000)(v1v2v3)=(000)\begin{pmatrix} 1 & 0 & 1 \\ 0 & 1 & -1 \\ 0 & 0 & 0 \end{pmatrix}*\begin{pmatrix} v_1 \\ v_2 \\ v_3 \end{pmatrix}=\begin{pmatrix} 0 \\ 0 \\ 0 \end{pmatrix}v=(111)v=\begin{pmatrix} -1 \\ 1 \\ 1 \end{pmatrix}

The principal axis is


13(111){1 \over \sqrt{3}}\begin{pmatrix} -1 \\ 1 \\ 1 \end{pmatrix}λ3=3\lambda_3=-3(222240204)(v1v2v3)=(000)\begin{pmatrix} 2 & -2 & -2 \\ -2 & 4 & 0 \\ -2 & 0 &4 \end{pmatrix}*\begin{pmatrix} v_1 \\ v_2 \\ v_3 \end{pmatrix}=\begin{pmatrix} 0 \\ 0 \\ 0 \end{pmatrix}(102011000)(v1v2v3)=(000)\begin{pmatrix} 1 & 0 & -2 \\ 0 & 1 & -1 \\ 0 & 0 & 0 \end{pmatrix}*\begin{pmatrix} v_1 \\ v_2 \\ v_3 \end{pmatrix}=\begin{pmatrix} 0 \\ 0 \\ 0 \end{pmatrix}v=(211)v=\begin{pmatrix} 2 \\ 1 \\ 1 \end{pmatrix}

The principal axis is


16(211){1 \over \sqrt{6}}\begin{pmatrix} 2 \\ 1 \\ 1 \end{pmatrix}


Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

No comments. Be the first!
LATEST TUTORIALS
APPROVED BY CLIENTS