Question #86509
Let T: P2 be defined by
T(a+bx+cx^2)= b+2cx+(a-b)*x^2.
Check that T is a linear transformation. Find the matrix of the transformation with respect to the ordered bases B1={x^2, x^2+x, x^2+x+1} and B2= {1,x,x^2} . Find the kernel of T.
1
Expert's answer
2019-03-20T12:12:11-0400

Answer on Question #86509 – Math – Linear Algebra


Let T:P2T : P_2 be defined by

T(a+bx+cx2)=b+2cx+(ab)x2.T \left( a + bx + cx^2 \right) = b + 2cx + (a - b) x^2 \, .

Check that T is a linear transformation. Find the matrix of the transformation with respect to the ordered bases B1={x2,x2+x,x2+x+1}B_1 = \left\{ x^2 , x^2 + x , x^2 + x + 1 \right\} and B2={1,x,x2}B_2 = \left\{ 1 , x , x^2 \right\}. Find the kernel of T.


Solution:


Let X1=a1+b1x+c1x2X_1 = a_1 + b_1 x + c_1 x^2 and X2=a2+b2x+c2x2X_2 = a_2 + b_2 x + c_2 x^2 be two polynomials, and let α\alpha be a number. Then X1+X2=a1+a2+(b1+b2)x+(c1+c2)x2X_1 + X_2 = a_1 + a_2 + \left( b_1 + b_2 \right) x + \left( c_1 + c_2 \right) x^2,

T(X1+X2)=b1+b2+2(c1+c2)x+(a1+a2b1b2)x2=T(X1)+T(X2)T \left( X_1 + X_2 \right) = b_1 + b_2 + 2 \left( c_1 + c_2 \right) x \newline + \left( a_1 + a_2 - b_1 - b_2 \right) x^2 = T \left( X_1 \right) + T \left( X_2 \right)

and

T(αX1)=αb1+2αc1x+(αa1αb1)x2=αT(X1).T \left( \alpha X_1 \right) = \alpha b_1 + 2 \alpha c_1 x + \left( \alpha a_1 - \alpha b_1 \right) x^2 = \alpha T \left( X_1 \right) \, .

Hence, T is linear. Denoting the elements of the bases as B1={e1,e2,e3}B_1 = \{ e_1 , e_2 , e_3 \} and B2={f1,f2,f3}B_2 = \{ f_1 , f_2 , f_3 \}, we have

T(e1)=2f2,T(e2)=2f2f3,T(e3)=f1+2f2.T \left( e_1 \right) = 2 f_2 \, , \quad T \left( e_2 \right) = 2 f_2 - f_3 \, , \quad T \left( e_3 \right) = f_1 + 2 f_2 \, .

The matrix of this transformation, canonically defined as T(ei)=jTjifjT \left( e_i \right) = \sum_j T_{ji} f_j, is then

(001222010).\begin{pmatrix} 0 & 0 & 1 \\ 2 & 2 & 2 \\ 0 & -1 & 0 \end{pmatrix} \, .

This matrix is non-degenerate (its determinant is equal to -2), so that the kernel of T is the subspace formed by the null polynomial: ker T = {0}.


Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

No comments. Be the first!
LATEST TUTORIALS
APPROVED BY CLIENTS