2019-03-07T05:12:10-05:00
Let P^(e)= {p(x)€R[x] | p(x)=p(-x) }
P^(o)={p(x)€R[x] | p(x)=-p(-x) }
Check that P^(e) and P^(o) are subspaces of R[x].
1
2019-03-11T14:44:40-0400
P ( e ) = { p ( x ) ∈ R [ x ] ∣ p ( x ) = p ( − x ) } P^{(e)}= \{p(x) \in R[x] | p(x)=p(-x) \} P ( e ) = { p ( x ) ∈ R [ x ] ∣ p ( x ) = p ( − x )}
r , s ∈ P ( e ) ⇒ ( r + s ) ( x ) = r ( x ) + s ( x ) = r ( − x ) + s ( − x ) = ( r + s ) ( − x ) r,s \in P^{(e)} \Rightarrow (r+s)(x)=r(x)+s(x)=r(-x)+s(-x)=(r+s)(-x) r , s ∈ P ( e ) ⇒ ( r + s ) ( x ) = r ( x ) + s ( x ) = r ( − x ) + s ( − x ) = ( r + s ) ( − x )
r ∈ P ( e ) , a ∈ R ⇒ ( a r ) ( x ) = a r ( x ) = a r ( − x ) = ( a r ) ( − x ) r \in P^{(e)}, a \in R \Rightarrow (ar)(x)=ar(x)=ar(-x)=(ar)(-x) r ∈ P ( e ) , a ∈ R ⇒ ( a r ) ( x ) = a r ( x ) = a r ( − x ) = ( a r ) ( − x )
P ( o ) = { p ( x ) ∈ R [ x ] ∣ p ( x ) = − p ( − x ) } P^{(o)}= \{p(x) \in R[x] | p(x)=-p(-x) \} P ( o ) = { p ( x ) ∈ R [ x ] ∣ p ( x ) = − p ( − x )}
r , s ∈ P ( o ) ⇒ ( r + s ) ( x ) = r ( x ) + s ( x ) = − r ( − x ) − s ( − x ) = − ( r + s ) ( − x ) r,s \in P^{(o)} \Rightarrow (r+s)(x)=r(x)+s(x)=-r(-x)-s(-x)=-(r+s)(-x) r , s ∈ P ( o ) ⇒ ( r + s ) ( x ) = r ( x ) + s ( x ) = − r ( − x ) − s ( − x ) = − ( r + s ) ( − x )
r ∈ P ( o ) , a ∈ R ⇒ ( a r ) ( x ) = a r ( x ) = − a r ( − x ) = − ( a r ) ( − x ) r \in P^{(o)}, a \in R \Rightarrow (ar)(x)=ar(x)=-ar(-x)=-(ar)(-x) r ∈ P ( o ) , a ∈ R ⇒ ( a r ) ( x ) = a r ( x ) = − a r ( − x ) = − ( a r ) ( − x )
Need a fast expert's response?
Submit order
and get a quick answer at the best price
for any assignment or question with DETAILED EXPLANATIONS !
Comments