Answer to Question #85939 in Linear Algebra for RAKESH DEY
Let P^(e)= {p(x)€R[x] | p(x)=p(-x) }
P^(o)={p(x)€R[x] | p(x)=-p(-x) }
Check that P^(e) and P^(o) are subspaces of R[x].
1
2019-03-11T14:44:40-0400
"P^{(e)}= \\{p(x) \\in R[x] | p(x)=p(-x) \\}"
"r,s \\in P^{(e)} \\Rightarrow (r+s)(x)=r(x)+s(x)=r(-x)+s(-x)=(r+s)(-x)"
"r \\in P^{(e)}, a \\in R \\Rightarrow (ar)(x)=ar(x)=ar(-x)=(ar)(-x)"
"P^{(o)}= \\{p(x) \\in R[x] | p(x)=-p(-x) \\}"
"r,s \\in P^{(o)} \\Rightarrow (r+s)(x)=r(x)+s(x)=-r(-x)-s(-x)=-(r+s)(-x)"
"r \\in P^{(o)}, a \\in R \\Rightarrow (ar)(x)=ar(x)=-ar(-x)=-(ar)(-x)"
Need a fast expert's response?
Submit order
and get a quick answer at the best price
for any assignment or question with DETAILED EXPLANATIONS!
Comments
Leave a comment