Let P^(e)= {p(x)€R[x] | p(x)=p(-x) }
P^(o)={p(x)€R[x] | p(x)=-p(-x) }
Check that P^(e) and P^(o) are subspaces of R[x].
1
2019-03-11T14:44:40-0400
P(e)={p(x)∈R[x]∣p(x)=p(−x)}
r,s∈P(e)⇒(r+s)(x)=r(x)+s(x)=r(−x)+s(−x)=(r+s)(−x)
r∈P(e),a∈R⇒(ar)(x)=ar(x)=ar(−x)=(ar)(−x)
P(o)={p(x)∈R[x]∣p(x)=−p(−x)}
r,s∈P(o)⇒(r+s)(x)=r(x)+s(x)=−r(−x)−s(−x)=−(r+s)(−x)
r∈P(o),a∈R⇒(ar)(x)=ar(x)=−ar(−x)=−(ar)(−x)
Need a fast expert's response?
Submit order
and get a quick answer at the best price
for any assignment or question with DETAILED EXPLANATIONS!
Comments