let A be(1,1,-1)
B (1,1,1)
C (0,1,1)
then "\\vec{AB} = (0,0,2)" and "\\vec{AC} = (-1,0,2)"
the vector equation will be ( Rm-Ra, AB, AC) = 0, where m (x,y,z)
coordinate form (matrix):
"\\begin{vmatrix}\n x-1 & y-1 & z+1 \\\\\n 0 & 0 & 2 \\\\\n-1 & 0 & 2\n\\end{vmatrix}" = 0
"r= \\vec{Ra}+S* \\vec{AB} +t* \\vec{AC}"
where S and t are some coefficients
vector-coordinate form:
"\\begin{cases}\nx= 1+(-1)*t \\\\\ny=1 \\\\\nz= -1 + 2*S + 2*t\n\\end{cases}" (1)
"line: \\vec{r} = (1+3*t)* \\vec{i} + (r-t)* \\vec{j}+ (1+t)* \\vec{k}"
"\\begin{cases}\nx=1+3t' \\\\\ny=2-t' \\\\\nz=1+t'\n\\end{cases}" (2)
from (1) y=1, then from (2) t' = 2-y = 2-1=1
then from (2) t'= z-1 follows 1=z-1, z=2
then from (2) x=1+3*1=4
answer:
point of intersection (4,1,2)
Comments
Leave a comment