Question #86166
Find the vector equation of the plane determined by point ( 1,1,-1) (1, 1,1) and (0,1,1). Also find point of intersection of line r = (1+3t)I + (2-t) j + (1+t) and the plane.
1
Expert's answer
2019-03-14T13:03:40-0400


let A be(1,1,-1)

B (1,1,1)

C (0,1,1)

then AB=(0,0,2)\vec{AB} = (0,0,2) and AC=(1,0,2)\vec{AC} = (-1,0,2)

the vector equation will be ( Rm-Ra, AB, AC) = 0, where m (x,y,z)


coordinate form (matrix):

x1y1z+1002102\begin{vmatrix} x-1 & y-1 & z+1 \\ 0 & 0 & 2 \\ -1 & 0 & 2 \end{vmatrix} = 0


r=Ra+SAB+tACr= \vec{Ra}+S* \vec{AB} +t* \vec{AC}

where S and t are some coefficients


vector-coordinate form:

{x=1+(1)ty=1z=1+2S+2t\begin{cases} x= 1+(-1)*t \\ y=1 \\ z= -1 + 2*S + 2*t \end{cases} (1)


line:r=(1+3t)i+(rt)j+(1+t)kline: \vec{r} = (1+3*t)* \vec{i} + (r-t)* \vec{j}+ (1+t)* \vec{k}


{x=1+3ty=2tz=1+t\begin{cases} x=1+3t' \\ y=2-t' \\ z=1+t' \end{cases} (2)


from (1) y=1, then from (2) t' = 2-y = 2-1=1

then from (2) t'= z-1 follows 1=z-1, z=2

then from (2) x=1+3*1=4


answer:

point of intersection (4,1,2)



Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

No comments. Be the first!
LATEST TUTORIALS
APPROVED BY CLIENTS