Question #86510
Consider the basis e1=(1,1,-1), e2=(-1,1,1) and e3=(1,-1,1) of R^3 over R. Find the dual basis of {e1,e2,e3}.
1
Expert's answer
2019-03-21T10:47:40-0400

SOLUTION

We need to find vectors:


e1=(x1,y1,z1),e2=(x2,y2,z2),e3=(x3,y3,z3)e^1=(x_1,y_1,z_1),\quad e^2=(x_2,y_2,z_2),\quad e^3=(x_3,y_3,z_3)

The dual base vectors should satisfy this:


eiej=δije_i\cdot e_j=\delta_i^j

The condition equals to 3 systems of 3 equations in 3 unknowns. Solving each system will give you one vector for the dual base. Here goes the first one which would be for the first dual base vector:


x1+y1z1=1x1+y1+z1=0x1y1+z1=0x_1+y_1-z_1=1\\ -x_1+y_1+z_1=0\\ x_1-y_1+z_1=0

Then,


x1=12y1=12z1=0\boxed{x_1=\frac{1}{2}\quad y_1=\frac{1}{2}\quad z_1=0}

for second vector:


x2+y2z2=0x2+y2+z2=1x2y2+z2=0x_2+y_2-z_2=0\\ -x_2+y_2+z_2=1\\ x_2-y_2+z_2=0

Then,


x2=0y2=12z2=12\boxed{x_2=0\quad y_2=\frac{1}{2}\quad z_2=\frac{1}{2}}

for third vector:


x3+y3z3=0x3+y3+z3=0x3y3+z3=1x_3+y_3-z_3=0\\ -x_3+y_3+z_3=0\\ x_3-y_3+z_3=1

Then,


x3=12y3=0z3=12\boxed{x_3=\frac{1}{2}\quad y_3=0\quad z_3=\frac{1}{2}}

ANSWER

e1=(12,12,0),e2=(0,12,12),e3=(12,0,12)e^1=\left(\frac{1}{2},\frac{1}{2},0\right),\quad e^2=\left(0,\frac{1}{2},\frac{1}{2}\right),\quad e^3=\left(\frac{1}{2},0,\frac{1}{2}\right)


Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

No comments. Be the first!
LATEST TUTORIALS
APPROVED BY CLIENTS