Given the rules
z 1 → z 1 + i z 2 = w 1 z_1\to z_1+iz_2=w_1 z 1 → z 1 + i z 2 = w 1 z 2 → i z 1 − 2 z 2 + i z 3 = w 2 z_2\to iz_1-2z_2+iz_3=w_2 z 2 → i z 1 − 2 z 2 + i z 3 = w 2 z 3 → − i z 2 + z 3 = w 3 z_3\to -iz_2+z_3=w_3 z 3 → − i z 2 + z 3 = w 3 For linear operator 𝑇 the matrix representation is
T = [ 1 i 0 i − 2 i 0 − i 1 ] T=\begin{bmatrix}
1 & i & 0 \\
i & -2 & i \\ 0 & -i & 1
\end{bmatrix} T = ⎣ ⎡ 1 i 0 i − 2 − i 0 i 1 ⎦ ⎤ We recall, that an operator T* is called adjoint for the linear operator T if
f o r a l l x , y ∈ C 3 ( T x , y ) = ( x , T ∗ y ) . for \ all\ x, y \in \mathbb{C}^3 \ (Tx, y)=(x, T^*y). f or a ll x , y ∈ C 3 ( T x , y ) = ( x , T ∗ y ) . The matrix representation for T* can be found as
T ∗ = ( T ‾ ) T = ( T T ) ‾ T^*=(\overline{T})^T=\overline{(T^T)} T ∗ = ( T ) T = ( T T ) where TT denotes the transponse
\overline{T} \ denotes the matrix with complex conjugated entries.
In our case
T ∗ = [ 1 − i 0 − i − 2 i 0 − i 1 ] / = T T^*=\begin{bmatrix}
1 & -i & 0 \\
-i & -2 & i \\ 0 & -i & 1
\end{bmatrix} \mathrlap{\,/}{=} \ T T ∗ = ⎣ ⎡ 1 − i 0 − i − 2 − i 0 i 1 ⎦ ⎤ / = T The adjoint operator
T ∗ ( z 1 , z 2 , z 3 ) = ( z 1 − i z 2 , − i z 1 − 2 z 2 + i z 3 , − i z 2 + z 3 ) . T^*(z_1, z_2, z_3)=(z_1-iz_2, -iz_1-2z_2+iz_3, -iz_2+z_3). T ∗ ( z 1 , z 2 , z 3 ) = ( z 1 − i z 2 , − i z 1 − 2 z 2 + i z 3 , − i z 2 + z 3 ) . Therefore, T is not selfadjoint.
We recall, that a unitary operator is a bounded linear operator on a Hilbert space that satisfies
U ∗ U = U U ∗ = I 3 , U^*U=UU^*=I_3, U ∗ U = U U ∗ = I 3 , where U* is the adjoint of U.
In our case
T ∗ T = [ 1 − i 0 − i − 2 i 0 − i 1 ] ∗ [ 1 i 0 i − 2 i 0 − i 1 ] = [ 2 3 i 1 − 3 i 6 − i 1 i 2 ] / = I 3 T^*T=\begin{bmatrix}
1 & -i & 0 \\
-i & -2 & i \\ 0 & -i & 1
\end{bmatrix}*\begin{bmatrix}
1 & i & 0 \\
i & -2 & i \\ 0 & -i & 1
\end{bmatrix}=\begin{bmatrix}
2 & 3i & 1 \\
-3i & 6 & -i \\ 1 & i & 2
\end{bmatrix} \mathrlap{\,/}{=} \ I_3 T ∗ T = ⎣ ⎡ 1 − i 0 − i − 2 − i 0 i 1 ⎦ ⎤ ∗ ⎣ ⎡ 1 i 0 i − 2 − i 0 i 1 ⎦ ⎤ = ⎣ ⎡ 2 − 3 i 1 3 i 6 i 1 − i 2 ⎦ ⎤ / = I 3 Therefore, T is not unitary.
Comments