Question #86546
Consider the linear operator T:C^3 be defined by
T(z1,z2,z3)= (z1+iz2, iz1-2z2+iz3,-iz2+z3).
Compute T^* and check whether T is self-adjoint.
Check whether T is unitary.
1
Expert's answer
2019-03-22T11:56:52-0400

Given the rules


z1z1+iz2=w1z_1\to z_1+iz_2=w_1z2iz12z2+iz3=w2z_2\to iz_1-2z_2+iz_3=w_2z3iz2+z3=w3z_3\to -iz_2+z_3=w_3

For linear operator 𝑇 the matrix representation is


T=[1i0i2i0i1]T=\begin{bmatrix} 1 & i & 0 \\ i & -2 & i \\ 0 & -i & 1 \end{bmatrix}

We recall, that an operator T* is called adjoint for the linear operator  T if


for all x,yC3 (Tx,y)=(x,Ty).for \ all\ x, y \in \mathbb{C}^3 \ (Tx, y)=(x, T^*y).

The matrix representation for T* can be found as


T=(T)T=(TT)T^*=(\overline{T})^T=\overline{(T^T)}

where TT denotes the transponse

\overline{T} \ denotes the matrix with complex conjugated entries.

In our case


T=[1i0i2i0i1]/= TT^*=\begin{bmatrix} 1 & -i & 0 \\ -i & -2 & i \\ 0 & -i & 1 \end{bmatrix} \mathrlap{\,/}{=} \ T

The adjoint operator 


T(z1,z2,z3)=(z1iz2,iz12z2+iz3,iz2+z3).T^*(z_1, z_2, z_3)=(z_1-iz_2, -iz_1-2z_2+iz_3, -iz_2+z_3).

Therefore, T is not selfadjoint.


We recall, that a unitary operator is a bounded linear operator on a Hilbert space that satisfies 


UU=UU=I3,U^*U=UU^*=I_3,

where U* is the adjoint of U.

In our case


TT=[1i0i2i0i1][1i0i2i0i1]=[23i13i6i1i2]/= I3T^*T=\begin{bmatrix} 1 & -i & 0 \\ -i & -2 & i \\ 0 & -i & 1 \end{bmatrix}*\begin{bmatrix} 1 & i & 0 \\ i & -2 & i \\ 0 & -i & 1 \end{bmatrix}=\begin{bmatrix} 2 & 3i & 1 \\ -3i & 6 & -i \\ 1 & i & 2 \end{bmatrix} \mathrlap{\,/}{=} \ I_3

Therefore, T is not unitary.


Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

No comments. Be the first!
LATEST TUTORIALS
APPROVED BY CLIENTS