Proof whether the following operations are inner product operations:
⟨x, y⟩ = 2x1y1 − x1y2 − x2y1 + 2x2y2, x=(x1, x2), y=(y1, y2)
"\u27e8x, y\u27e9" satisfies the following properties:
Linearity:
"(ax+by,z)=a(x,z)+b(y,z)"
"(ax+by,z)= 2(ax_1+by_1)z_1 \u2212 (ax_1+by_1)z_2 \u2212 (ax_2+by_2)z_1 + 2(ax_2+by_2)z_2="
"=a( 2x_1z_1 \u2212 x_1z_2 \u2212 x_2z_1 + 2x_2z_2)+b( 2y_1z_1 \u2212 y_1z_2 \u2212 y_2z_1 + 2y_2z_2)"
"a(x,z)+b(y,z)=a( 2x_1z_1 \u2212 x_1z_2 \u2212 x_2z_1 + 2x_2z_2)+b( 2y_1z_1 \u2212 y_1z_2 \u2212 y_2z_1 + 2y_2z_2)"
Symmetric Property:
"(x,y)=(y,x)"
Positive Definite Property:
"\u27e8x, x\u27e9 = 2x_1x_1 \u2212 x_1x_2 \u2212 x_2x_1 + 2x_2x_2=(x_1-x_2)^2+x_1^2+x_2^2\\ge0"
so,
"\u27e8x, y\u27e9" is inner product
Comments
Leave a comment