⟨x,y⟩ satisfies the following properties:
Linearity:
(ax+by,z)=a(x,z)+b(y,z)
(ax+by,z)=2(ax1+by1)z1−(ax1+by1)z2−(ax2+by2)z1+2(ax2+by2)z2=
=a(2x1z1−x1z2−x2z1+2x2z2)+b(2y1z1−y1z2−y2z1+2y2z2)
a(x,z)+b(y,z)=a(2x1z1−x1z2−x2z1+2x2z2)+b(2y1z1−y1z2−y2z1+2y2z2)
Symmetric Property:
(x,y)=(y,x)
Positive Definite Property:
⟨x,x⟩=2x1x1−x1x2−x2x1+2x2x2=(x1−x2)2+x12+x22≥0
so,
⟨x,y⟩ is inner product
Comments