If ( 0 0 0 ) \begin{pmatrix}
0 \\
0\\
0
\end{pmatrix} ⎝ ⎛ 0 0 0 ⎠ ⎞ ∈ V \in\>V ∈ V then given a b = 1 , ab=1, ab = 1 , then ( 0 ) ( 0 ) ≠ 1 (0)(0)\neq1 ( 0 ) ( 0 ) = 1
∴ ( 0 0 0 ) \therefore \begin{pmatrix}
0 \\
0\\0
\end{pmatrix} ∴ ⎝ ⎛ 0 0 0 ⎠ ⎞ is not V ⟹ \implies ⟹ V is empty
2). Let x , y ∈ x,y\in x , y ∈ V then
x = ( x 1 x 2 x 3 ) x=\begin{pmatrix}
x_1 \\
x_2 \\
x_3
\end{pmatrix} x = ⎝ ⎛ x 1 x 2 x 3 ⎠ ⎞ and y = ( y 1 y 2 y 3 ) y=\begin{pmatrix}
y_1 \\
y_2 \\
y_3
\end{pmatrix} y = ⎝ ⎛ y 1 y 2 y 3 ⎠ ⎞ x i y i ∈ R x_iy_i\in\R x i y i ∈ R
x 1 x 2 = 1 x_1x_2=1 x 1 x 2 = 1 and y 1 y 2 = 1 y_1y_2=1 y 1 y 2 = 1
x 2 = 1 x 1 x_2=\frac{1}{x_{1}} x 2 = x 1 1 y 2 = 1 y 1 y_2=\frac{1}{y_1} y 2 = y 1 1
x + y = ( x 1 + y 1 x 2 + y 2 x 3 + y 3 ) x+y= \begin{pmatrix}
x_1+y_1 \\
x_2+y_2 \\
x_3+y_3
\end{pmatrix} x + y = ⎝ ⎛ x 1 + y 1 x 2 + y 2 x 3 + y 3 ⎠ ⎞
( x 2 + y 2 ) ( x 1 + y 1 ) = 1 ⟹ ( x 2 + y 2 ) = 1 x 1 + y 1 (x_2+y_2)(x_1+y_1)=1\implies(x_2+y_2)=\frac{1}{x_1+y_1} ( x 2 + y 2 ) ( x 1 + y 1 ) = 1 ⟹ ( x 2 + y 2 ) = x 1 + y 1 1
x 2 + y 2 = 1 x 1 + 1 y 1 ≠ 1 x 1 + y 1 x_2+y_2=\frac{1}{x_1}+\frac{1}{y_1}\neq\frac{1}{x_1+y_1} x 2 + y 2 = x 1 1 + y 1 1 = x 1 + y 1 1
S is not closed under addition
3) Take x ∈ x\in x ∈ V and α ∈ R \alpha\in\R α ∈ R then
x = ( x 1 x 2 x 3 ) x=\begin{pmatrix}
x_1 \\
x_2\\
x_3
\end{pmatrix} x = ⎝ ⎛ x 1 x 2 x 3 ⎠ ⎞ for x i ∈ R x_i \in\R x i ∈ R
( x 1 ) ( x 2 ) = 1 ⟹ α { ( x 1 ) ( x 2 ) } = α ( 1 ) (x_1)(x_2)=1\implies\alpha\begin{Bmatrix}
(x_1)(x_2)
\end{Bmatrix}=\alpha(1) ( x 1 ) ( x 2 ) = 1 ⟹ α { ( x 1 ) ( x 2 ) } = α ( 1 )
α x = ( α x 1 α x 2 α x 3 ) \alpha\>x=\begin{pmatrix}
\alpha\>x_1 \\
\alpha\>x_2\\
\alpha\>x_3
\end{pmatrix} α x = ⎝ ⎛ α x 1 α x 2 α x 3 ⎠ ⎞
∴ ( α x 2 ) ( α x 1 ) = α 2 ( x 1 ) ( x 2 ) ≠ α ( x 1 ) ( x 2 ) \therefore(\alpha\>x_2)(\alpha\>x_1)=\alpha^2(x_1)(x_2)\ne\alpha(x_1)(x_2) ∴ ( α x 2 ) ( α x 1 ) = α 2 ( x 1 ) ( x 2 ) = α ( x 1 ) ( x 2 )
S is not closed under scalar multiplication
S is not a subspace of R 3 \R^3 R 3
Comments