Question #266198

determine whether the set s={(a,b,c) ; ab=1} is a subspace of R3


1
Expert's answer
2021-11-29T19:19:23-0500



If (000)\begin{pmatrix} 0 \\ 0\\ 0 \end{pmatrix} V\in\>V then given ab=1,ab=1, then (0)(0)1(0)(0)\neq1


(000)\therefore \begin{pmatrix} 0 \\ 0\\0 \end{pmatrix} is not V     \implies V is empty



2). Let x,yx,y\in V then


x=(x1x2x3)x=\begin{pmatrix} x_1 \\ x_2 \\ x_3 \end{pmatrix} and y=(y1y2y3)y=\begin{pmatrix} y_1 \\ y_2 \\ y_3 \end{pmatrix} xiyiRx_iy_i\in\R



x1x2=1x_1x_2=1 and y1y2=1y_1y_2=1

x2=1x1x_2=\frac{1}{x_{1}} y2=1y1y_2=\frac{1}{y_1}


x+y=(x1+y1x2+y2x3+y3)x+y= \begin{pmatrix} x_1+y_1 \\ x_2+y_2 \\ x_3+y_3 \end{pmatrix}



(x2+y2)(x1+y1)=1    (x2+y2)=1x1+y1(x_2+y_2)(x_1+y_1)=1\implies(x_2+y_2)=\frac{1}{x_1+y_1}



x2+y2=1x1+1y11x1+y1x_2+y_2=\frac{1}{x_1}+\frac{1}{y_1}\neq\frac{1}{x_1+y_1}



S is not closed under addition


3) Take xx\in V and αR\alpha\in\R then


x=(x1x2x3)x=\begin{pmatrix} x_1 \\ x_2\\ x_3 \end{pmatrix} for xiRx_i \in\R



(x1)(x2)=1    α{(x1)(x2)}=α(1)(x_1)(x_2)=1\implies\alpha\begin{Bmatrix} (x_1)(x_2) \end{Bmatrix}=\alpha(1)



αx=(αx1αx2αx3)\alpha\>x=\begin{pmatrix} \alpha\>x_1 \\ \alpha\>x_2\\ \alpha\>x_3 \end{pmatrix}


(αx2)(αx1)=α2(x1)(x2)α(x1)(x2)\therefore(\alpha\>x_2)(\alpha\>x_1)=\alpha^2(x_1)(x_2)\ne\alpha(x_1)(x_2)



S is not closed under scalar multiplication


S is not a subspace of R3\R^3


Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

No comments. Be the first!
LATEST TUTORIALS
APPROVED BY CLIENTS