Let A, B ∈ P2 such that
A=a0+a1x+a2x2 , where a0=a1
B=b0+b1x+b2x2 , where b0=b1
Let α be any scalar from the field
A+αB=a0+a1x+a2x2+α(b0+b1x+b2x2)
A+αB=a0+αb0+a1x+αb1x+a2x2+αb2x2
A+αB=(a0+αb0)+(a1+αb1)x+(a2+αb2)x2
Since b0=b1=>αb0=αb1
Also, we know that a0=a1
=>a0+αb0=a1+αb1
Thus, A+αB=(a0+αb0)+(a1+αb1)x+(a2+αb2)x2 , where a0+αb0=a1+αb01
Hence W is a Subspace of P2
Comments