given P2 as the vector space of all real polynomials of degree less than or equal to two. Let W be a subspace of P2 specified by W= {a0 + a1x + a2x^2 where a0 -a1 =0}. Determine whether W is a subspace of P2.
Let A, B ∈ P2 such that
"A = a_0 + a_1x + a_2x\u00b2" , where "a_0 = a_1"
"B = b_0 + b_1x + b_2x\u00b2" , where "b_0 = b_1"
Let α be any scalar from the field
"A+\u03b1B = a_0 + a_1x + a_2x\u00b2 + \u03b1(b_0 + b_1x + b_2x\u00b2)"
"A+\u03b1B = a_0+\u03b1b_0 + a_1x+\u03b1b_1x + a_2x\u00b2+\u03b1b_2x\u00b2"
"A+\u03b1B = (a_0+\u03b1b_0) + (a_1+\u03b1b_1)x + (a_2+\u03b1b_2)x\u00b2"
Since "b_0 = b_1 => \u03b1b_0=\u03b1b_1"
Also, we know that "a_0 = a_1"
"=> a_0+\u03b1b_0=a_1+\u03b1b_1"
Thus, "A+\u03b1B = (a_0+\u03b1b_0) + (a_1+\u03b1b_1)x + (a_2+\u03b1b_2)x\u00b2" , where "a_0+\u03b1b_0=a_1+\u03b1b_01"
Hence W is a Subspace of P2
Comments
Leave a comment