Let
T:
R3→R2
be a linear transformation such that
(1,1,1) = (1,0),
(1,1,0) = (2, −1) and
(1,0,0) =
(4,3). What is
(2, −3,5)?
"T\\bigg(\\begin{bmatrix}\n 1 \\\\\n 1 \\\\\n0\n\\end{bmatrix}\\bigg)=\\begin{bmatrix}\n 2 \\\\\n -1\n\\end{bmatrix},"
"T\\bigg(\\begin{bmatrix}\n 1 \\\\\n 0 \\\\\n0\n\\end{bmatrix}\\bigg)=\\begin{bmatrix}\n 6 \\\\\n 3\n\\end{bmatrix}"
"A=\\begin{bmatrix}\n a & b & c \\\\\n d & e & f\n\\end{bmatrix}"
"\\begin{matrix}\n a+b+c=1 \\\\\n d+ e+f=0\n\\end{matrix}"
"\\begin{matrix}\n a+b=2 \\\\\n d+ e=-1\n\\end{matrix}"
"\\begin{matrix}\n a=4 \\\\\n d=3\n\\end{matrix}"
"A=\\begin{bmatrix}\n 4 & -2 & -1 \\\\\n 3 & -4 & 1\n\\end{bmatrix}"
"\\begin{bmatrix}\n 4 & -2 & -1 \\\\\n 3 & -4 & 1\n\\end{bmatrix}\\begin{bmatrix}\n 2 \\\\\n -3 \\\\\n5\n\\end{bmatrix}=\\begin{bmatrix}\n 4(2)-2(-3)-1(5) \\\\\n 3(2)-4(-3)+1(5) \n\\end{bmatrix}"
"=\\begin{bmatrix}\n 9 \\\\\n 23\n\\end{bmatrix}"
Comments
Leave a comment