Let A =
(8 -1 2
2 0 -5)
B =
(-1 7
3 -2
1 5)
and C =
(2 1
3 5)
(a) Calculate AB and A + B if they exist.
(b) Verify that (AB)C = A(BC).
(c) Calculate C-1 A.
a)
(A+B) does not exist, since matrices are of different sizes (2x3 and 3x2)
"AB=\\begin{pmatrix}\n 8 & -1 &2\\\\\n 2 & 0&-5\n\\end{pmatrix}\\begin{pmatrix}\n -1 & 7 \\\\\n 3 & -2\\\\\n1&5\n\\end{pmatrix}=\\begin{pmatrix}\n -8-3+2 & 56+2+10 \\\\\n -2-5 & 14-25\n\\end{pmatrix}=\\begin{pmatrix}\n -9 & 68 \\\\\n -7 & -11\n\\end{pmatrix}"
b)
"(AB)C=\\begin{pmatrix}\n -9 & 68 \\\\\n -7 & -11\n\\end{pmatrix}\\begin{pmatrix}\n 2 & 1 \\\\\n 3 & 5\n\\end{pmatrix}=\\begin{pmatrix}\n -18+204 & -9+340 \\\\\n -14-33 & -7-55\n\\end{pmatrix}=\\begin{pmatrix}\n 186 & 331 \\\\\n -47 & -62\n\\end{pmatrix}"
"BC=\\begin{pmatrix}\n -1 & 7 \\\\\n 3 & -2\\\\\n1&5\n\\end{pmatrix}\\begin{pmatrix}\n 2 & 1 \\\\\n 3 & 5\n\\end{pmatrix}=\\begin{pmatrix}\n -2+21 & -1+35 \\\\\n 6-6 & 3-10\\\\\n2+15&1+25\n\\end{pmatrix}=\\begin{pmatrix}\n 19 & 34 \\\\\n 0 & -7\\\\\n17&26\n\\end{pmatrix}"
"A(BC)=\\begin{pmatrix}\n 8 & -1 &2\\\\\n 2 & 0&-5\n\\end{pmatrix}\\begin{pmatrix}\n 19 & 34 \\\\\n 0 & -7\\\\\n17&26\n\\end{pmatrix}=\\begin{pmatrix}\n 152+34 & 272+7+52 \\\\\n 38-85 & 68-130\n\\end{pmatrix}="
"=\\begin{pmatrix}\n 186 & 331 \\\\\n -47 & -62\n\\end{pmatrix}"
c)
for C-1:
"C_*=\\begin{pmatrix}\n 5 & -3 \\\\\n -1 & 2\n\\end{pmatrix}" , "C_*^T=\\begin{pmatrix}\n 5 & -1 \\\\\n -3 & 2\n\\end{pmatrix}"
"|C|=10-3=7"
"C^{-1}=\\frac{C_*^T}{|C|}=\\frac{}{}=\\frac{1}{7}\\begin{pmatrix}\n 5 & -1 \\\\\n -3 & 2\n\\end{pmatrix}"
"C^{-1}A=\\frac{1}{7}\\begin{pmatrix}\n 5 & -1 \\\\\n -3 & 2\n\\end{pmatrix}\\begin{pmatrix}\n 8 & -1 &2\\\\\n 2 & 0&-5\n\\end{pmatrix}=\\frac{1}{7}\\begin{pmatrix}\n 40-2 & -5 &10+5\\\\\n -24+4 & 3&-6-10\n\\end{pmatrix}="
"=\\frac{1}{7}\\begin{pmatrix}\n 38 & -5 &15\\\\\n -20 & 3&-16\n\\end{pmatrix}"
Comments
Leave a comment