Answer to Question #260850 in Linear Algebra for talie

Question #260850

Show that the map T : R^


2 −→ R^2 defined by T(x1, x2) = (x1 −x2, 0) is a linear transformation, hence find the matrix


of this transformation relative to the basis B = {(−1, 1),(0, 1)}

1
Expert's answer
2021-11-15T19:52:28-0500

Solution;

Given ;

"T(x_1,x_2)=\\begin{bmatrix}\n x_1-x_2\\\\\n 0\n\\end{bmatrix}"

A map T is linear if;

"T(x)=Ax"

A is the matrix of transformation;

Here;

"A=\\begin{bmatrix}\n 1 & -1\\\\\n 0 & 0\n\\end{bmatrix}"

Clearly;

"T(x_1,x_2)=\\begin{bmatrix}\n 1 & -1\\\\\n 0 & 0\n\\end{bmatrix}" "\\begin{bmatrix}\n x_1\\\\\n x_2\n\\end{bmatrix}" ="(x_1-x_2,0)"

Therefore the map is a linear transformation.

And;

"B=[(-1,1),(0,1)]"

Hence;

"T_B(-1,1)=\\begin{bmatrix}\n -1-1\\\\\n 0\n\\end{bmatrix}=\\begin{bmatrix}\n -2\\\\\n 0\n\\end{bmatrix}"

"T_B(0,1)=\\begin{bmatrix}\n 0-1\\\\\n 0\n\\end{bmatrix}=\\begin{bmatrix}\n-1\\\\\n 0\n\\end{bmatrix}"

Hence;

"T_B=T[(-1,1),(0,1)]=[(-2,0),(-1,0)]"

Let;

"(-2,0)=a_1(-1,1)+b_1(0,1)"

"(-2,0)=(-a_1,a_1)+(0,b_1)"

"(-2,0)=(-a_1,a_1+b_1)"

From which;

"-2=-a_1" "\\therefore a_1=2"

Also;

"O=a_1+b_1" ;

"b_1=-a_1=-2"

Now,let;

"(-1,0)=a_2(-1,1)+b_2(0,1)"

"(-1,0)=(-a_2,a_2)+(0,b_2)"

"(-1,0)=(-a_2,a_2+b_2)"

From which;

"-1=-a_2 ,\\therefore a_2=1"

Also;

"0=a_2+b_2" ;

"b_2=-a_2=-1"

The coefficient matrix A,is ;

"A=\\begin{bmatrix}\n 2 & -2 \\\\\n 1 & -1\n\\end{bmatrix}"

Hence,the matrix of transformation of T relative to B is AT;

"A^T=\\begin{bmatrix}\n 2 & 1 \\\\\n -2 & -1\n\\end{bmatrix}"





Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

No comments. Be the first!

Leave a comment

LATEST TUTORIALS
New on Blog
APPROVED BY CLIENTS