Show that the map T : R^
2 −→ R^2 defined by T(x1, x2) = (x1 −x2, 0) is a linear transformation, hence find the matrix
of this transformation relative to the basis B = {(−1, 1),(0, 1)}
Solution;
Given ;
"T(x_1,x_2)=\\begin{bmatrix}\n x_1-x_2\\\\\n 0\n\\end{bmatrix}"
A map T is linear if;
"T(x)=Ax"
A is the matrix of transformation;
Here;
"A=\\begin{bmatrix}\n 1 & -1\\\\\n 0 & 0\n\\end{bmatrix}"
Clearly;
"T(x_1,x_2)=\\begin{bmatrix}\n 1 & -1\\\\\n 0 & 0\n\\end{bmatrix}" "\\begin{bmatrix}\n x_1\\\\\n x_2\n\\end{bmatrix}" ="(x_1-x_2,0)"
Therefore the map is a linear transformation.
And;
"B=[(-1,1),(0,1)]"
Hence;
"T_B(-1,1)=\\begin{bmatrix}\n -1-1\\\\\n 0\n\\end{bmatrix}=\\begin{bmatrix}\n -2\\\\\n 0\n\\end{bmatrix}"
"T_B(0,1)=\\begin{bmatrix}\n 0-1\\\\\n 0\n\\end{bmatrix}=\\begin{bmatrix}\n-1\\\\\n 0\n\\end{bmatrix}"
Hence;
"T_B=T[(-1,1),(0,1)]=[(-2,0),(-1,0)]"
Let;
"(-2,0)=a_1(-1,1)+b_1(0,1)"
"(-2,0)=(-a_1,a_1)+(0,b_1)"
"(-2,0)=(-a_1,a_1+b_1)"
From which;
"-2=-a_1" "\\therefore a_1=2"
Also;
"O=a_1+b_1" ;
"b_1=-a_1=-2"
Now,let;
"(-1,0)=a_2(-1,1)+b_2(0,1)"
"(-1,0)=(-a_2,a_2)+(0,b_2)"
"(-1,0)=(-a_2,a_2+b_2)"
From which;
"-1=-a_2 ,\\therefore a_2=1"
Also;
"0=a_2+b_2" ;
"b_2=-a_2=-1"
The coefficient matrix A,is ;
"A=\\begin{bmatrix}\n 2 & -2 \\\\\n 1 & -1\n\\end{bmatrix}"
Hence,the matrix of transformation of T relative to B is AT;
"A^T=\\begin{bmatrix}\n 2 & 1 \\\\\n -2 & -1\n\\end{bmatrix}"
Comments
Leave a comment