3 x − 2 y + 4 z = 0 3x−2y+4z=0 3 x − 2 y + 4 z = 0 Any vector w ⃗ = [ x y z ] \vec w=\begin{bmatrix}
x \\
y \\
z
\end{bmatrix} w = ⎣ ⎡ x y z ⎦ ⎤ in W W W satisfies 3 x − 2 y + 4 z = 0 3x-2y+4z=0 3 x − 2 y + 4 z = 0 or equivalently x = 2 3 y − 4 3 z . x=\dfrac{2}{3}y-\dfrac{4}{3}z. x = 3 2 y − 3 4 z .
Thus we have
w ⃗ = [ x y z ] = [ 2 3 y − 4 3 z y z ] = y [ 2 / 3 1 0 ] + z [ − 4 / 3 0 1 ] \vec w=\begin{bmatrix}
x \\
y \\
z
\end{bmatrix}=\begin{bmatrix}
\dfrac{2}{3}y-\dfrac{4}{3}z \\
y \\
z
\end{bmatrix}=y\begin{bmatrix}
2/3 \\
1 \\
0
\end{bmatrix}+z\begin{bmatrix}
-4/3 \\
0 \\
1
\end{bmatrix} w = ⎣ ⎡ x y z ⎦ ⎤ = ⎣ ⎡ 3 2 y − 3 4 z y z ⎦ ⎤ = y ⎣ ⎡ 2/3 1 0 ⎦ ⎤ + z ⎣ ⎡ − 4/3 0 1 ⎦ ⎤ Let
u ⃗ 1 = [ 2 / 3 1 0 ] , u ⃗ 2 = [ − 4 / 3 0 1 ] \vec u_1=\begin{bmatrix}
2/3 \\
1 \\
0
\end{bmatrix}, \vec u_2=\begin{bmatrix}
-4/3 \\
0\\
1
\end{bmatrix} u 1 = ⎣ ⎡ 2/3 1 0 ⎦ ⎤ , u 2 = ⎣ ⎡ − 4/3 0 1 ⎦ ⎤ The above computation shows that any vector w ⃗ \vec w w in W W W can be written as a linear combination of the vectors u ⃗ 1 , u ⃗ 2 . \vec u_1, \vec u_2. u 1 , u 2 .
Hence the set { u ⃗ 1 , u ⃗ 2 } \{\vec u_1, \vec u_2\} { u 1 , u 2 } is a spanning set for the subspace W . W. W .
We claim that { u ⃗ 1 , u ⃗ 2 } \{\vec u_1, \vec u_2\} { u 1 , u 2 } is a linearly independent set.
Consider
a 1 u ⃗ 1 + a 2 u ⃗ 2 = 0 ⃗ a_1\vec u_1+a_2\vec u_2=\vec 0 a 1 u 1 + a 2 u 2 = 0 The equation can be written as
[ ( 2 / 3 ) a 1 − ( 4 / 3 ) a 2 a 1 a 2 ] = [ 0 0 0 ] \begin{bmatrix}
(2/3)a_1-(4/3)a_2 \\
a_1 \\
a_2
\end{bmatrix}=\begin{bmatrix}
0 \\
0 \\
0
\end{bmatrix} ⎣ ⎡ ( 2/3 ) a 1 − ( 4/3 ) a 2 a 1 a 2 ⎦ ⎤ = ⎣ ⎡ 0 0 0 ⎦ ⎤ Comparing entries, we obtain a 1 = a 2 = 0. a_1=a_2=0. a 1 = a 2 = 0.
Thus the equation a 1 u ⃗ 1 + a 2 u ⃗ 2 = 0 ⃗ a_1\vec u_1+a_2\vec u_2=\vec 0 a 1 u 1 + a 2 u 2 = 0 has only the zero solution and hence the vectors u ⃗ 1 , u ⃗ 2 \vec u_1, \vec u_2 u 1 , u 2
are linearly independent.
We found a basis
{ u ⃗ 1 = [ 2 / 3 1 0 ] , u ⃗ 2 = [ − 4 / 3 0 1 ] } . \bigg\{\vec u_1=\begin{bmatrix}
2/3 \\
1 \\
0
\end{bmatrix}, \vec u_2=\begin{bmatrix}
-4/3 \\
0\\
1
\end{bmatrix}\bigg\}. { u 1 = ⎣ ⎡ 2/3 1 0 ⎦ ⎤ , u 2 = ⎣ ⎡ − 4/3 0 1 ⎦ ⎤ } .
Comments