Question #259060
(a) Let A=   be a matrix representing the linear transformation T
 i. Find the image of V = [−1, 2, 5] under T(2marks)
 ii. Determine the kernel or nullspaceof T(5marks)
Find the range and rank of T (3marks) 


(b) let T: R3 ... > R3 be defined by T (x, y, z) = (x + y, x − y, y + z)
Find the matrix representing T with respect to standard basis(3marks)
Find the kernel and nullity of T (4marks)
find Range and Rank of T(3marks) 


c) Let A=      be a matrix representing A respect to the standard under basis R3 
Find the image of V = [−2, 1, 2] under T (4marks)
Determine the kernel of T (3marks)
Find the rank of T (3marks) 

1
Expert's answer
2021-11-01T17:01:18-0400

In part (a) and (c) of the question, the respective matrix denoted as A are ommited.


Adjusting the conditions of the question

thus taking:


Part (a) matrix as

A=(101121101)A=\begin{pmatrix} 1&0& -1\\ 1&2&-1\\1&0&-1 \end{pmatrix}


and part(c) matrix as:


A=(330110211)A=\begin{pmatrix} 3&-3&0\\ 1&-1&0\\2&1&1 \end{pmatrix}


a) (i) image of v


(101121101)(125)=(626)\begin{pmatrix} 1&0&-1\\ 1&2&-1\\1&0&-1 \end{pmatrix}\begin{pmatrix} -1\\2\\5 \end{pmatrix}=\begin{pmatrix} -6\\-2\\ -6 \end{pmatrix}


(ii) ker(A)=[xR3Ax=0]ker(A)=[x\in\Reals^3|Ax=0]



(101121101)(abc)=[0]\begin{pmatrix} 1&0&-1\\1&2&-1\\1&0&-1 \end{pmatrix}\begin{pmatrix} a\\b\\c \end{pmatrix}=[0]


    a=cb=0andletc=1\implies a=c\quad b=0\>and\> let \>c=1


kerA=[c(101)]ker\>A=[\>c\begin{pmatrix} 1\\0\\1 \end{pmatrix}]


(iii) Range = columns of A corresponding to pivot column in rref (A)


Range=Range = { (111),(020 )\space\begin{pmatrix} 1\\1\\1 \end{pmatrix}\>,\>\begin{pmatrix}0\\2\\0\space \end{pmatrix} }


Rank=Rank= dim( column space A)

=2=2


b) (i) T=(xyz)=(x+yxyy+z)T=\begin{pmatrix} x\\y\\z \end{pmatrix}=\begin{pmatrix} x+y\\x-y\\ y+z \end{pmatrix}


=x(110)+(111)+z(001)=x\begin{pmatrix}1\\1\\0 \end {pmatrix}+\begin{pmatrix}1\\-1\\1 \end{pmatrix}+z\begin{pmatrix} 0\\0\\1 \end{pmatrix}


T=(110111001)\begin{pmatrix} 1&1&0\\ 1&-1&1\\0&0&1 \end{pmatrix}



(ii)rref of T=(100010001)=\begin{pmatrix}1&0&0\\0&1&0\\0&0&1 \end{pmatrix}


The rank of T is therefore 3

    \implies the nullity is zero

Ker T is a zero vector [0]


(iii) Range of T= span( column space (T))


=[(110),(111),(001)= [\> \begin{pmatrix}1\\1\\0 \end{pmatrix}\>,\>\begin{pmatrix}1\\-1\\1 \end{pmatrix}\>,\>\begin{pmatrix}0\\0\\1 \end{pmatrix} ]


Rank of T= dim (volume space)

=3


C) (i) Taking the omitted matrix as



A=(330110211)A=\begin{pmatrix}3&-3&0\\1&-1&0\\2&1&1 \end{pmatrix}

Image of v is


(330110211)(212)=(931)\begin{pmatrix} 3&-3&0\\1&-1&0\\2&1&1 \end{pmatrix}\begin{pmatrix} -2\\1\\2 \end{pmatrix}=\begin{pmatrix} -9\\-3\\-1 \end{pmatrix}


Im (v) = (-9,-3,-1)


iii) rref A=(10130113000)A=\begin{pmatrix}1&0&\frac{1}{3}\\0&1&\frac{1}{3}\\0&0&0 \end{pmatrix}

(10130113000)(abc)=[0]\begin{pmatrix} 1&0&\frac{1}{3}\\ 0&1&\frac{1}{3}\\0&0&0 \end{pmatrix}\begin{pmatrix}a\\ b\\c \end{pmatrix}=[0]


a=13cb=13ca=-\frac{1}{3}c\quad b=-\frac{1}{3}c

Let c=tc=t


Ker A=[[13131]t]tRA=[\begin{bmatrix} -\frac{1}{3}\\ -\frac{1}{3}\\1 \end{bmatrix}t ]\quad t\in\reals


iii). Rank of T= dim(column space (T)


=2































Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

No comments. Be the first!
LATEST TUTORIALS
APPROVED BY CLIENTS