(a) Let A= be a matrix representing the linear transformation T
i. Find the image of V = [−1, 2, 5] under T(2marks)
ii. Determine the kernel or nullspaceof T(5marks)
Find the range and rank of T (3marks)
(b) let T: R3 ... > R3 be defined by T (x, y, z) = (x + y, x − y, y + z)
Find the matrix representing T with respect to standard basis(3marks)
Find the kernel and nullity of T (4marks)
find Range and Rank of T(3marks)
c) Let A= be a matrix representing A respect to the standard under basis R3
Find the image of V = [−2, 1, 2] under T (4marks)
Determine the kernel of T (3marks)
Find the rank of T (3marks)
In part (a) and (c) of the question, the respective matrix denoted as A are ommited.
Adjusting the conditions of the question
thus taking:
Part (a) matrix as
"A=\\begin{pmatrix}\n 1&0& -1\\\\\n 1&2&-1\\\\1&0&-1\n\\end{pmatrix}"
and part(c) matrix as:
"A=\\begin{pmatrix}\n 3&-3&0\\\\\n 1&-1&0\\\\2&1&1\n\\end{pmatrix}"
a) (i) image of v
"\\begin{pmatrix}\n 1&0&-1\\\\\n 1&2&-1\\\\1&0&-1\n\\end{pmatrix}\\begin{pmatrix}\n -1\\\\2\\\\5\n \n\\end{pmatrix}=\\begin{pmatrix}\n -6\\\\-2\\\\\n -6\n\\end{pmatrix}"
(ii) "ker(A)=[x\\in\\Reals^3|Ax=0]"
"\\begin{pmatrix}\n 1&0&-1\\\\1&2&-1\\\\1&0&-1\n \n\\end{pmatrix}\\begin{pmatrix}\n a\\\\b\\\\c\n \n\\end{pmatrix}=[0]"
"\\implies a=c\\quad b=0\\>and\\> let \\>c=1"
"ker\\>A=[\\>c\\begin{pmatrix}\n 1\\\\0\\\\1\n \n\\end{pmatrix}]"
(iii) Range = columns of A corresponding to pivot column in rref (A)
"Range =" {"\\space\\begin{pmatrix}\n 1\\\\1\\\\1\n \n\\end{pmatrix}\\>,\\>\\begin{pmatrix}0\\\\2\\\\0\\space\n\\end{pmatrix}" }
"Rank=" dim( column space A)
"=2"
b) (i) "T=\\begin{pmatrix}\n x\\\\y\\\\z\n\\end{pmatrix}=\\begin{pmatrix}\n x+y\\\\x-y\\\\\n y+z\n\\end{pmatrix}"
"=x\\begin{pmatrix}1\\\\1\\\\0\n\\end {pmatrix}+\\begin{pmatrix}1\\\\-1\\\\1\n\\end{pmatrix}+z\\begin{pmatrix}\n 0\\\\0\\\\1\n \n\\end{pmatrix}"
T="\\begin{pmatrix}\n 1&1&0\\\\\n 1&-1&1\\\\0&0&1\n\\end{pmatrix}"
(ii)rref of T"=\\begin{pmatrix}1&0&0\\\\0&1&0\\\\0&0&1\n \n\\end{pmatrix}"
The rank of T is therefore 3
"\\implies" the nullity is zero
Ker T is a zero vector [0]
(iii) Range of T= span( column space (T))
"= [\\> \\begin{pmatrix}1\\\\1\\\\0\n\\end{pmatrix}\\>,\\>\\begin{pmatrix}1\\\\-1\\\\1\n\\end{pmatrix}\\>,\\>\\begin{pmatrix}0\\\\0\\\\1\n\\end{pmatrix}" ]
Rank of T= dim (volume space)
=3
C) (i) Taking the omitted matrix as
"A=\\begin{pmatrix}3&-3&0\\\\1&-1&0\\\\2&1&1\n \n\\end{pmatrix}"
Image of v is
"\\begin{pmatrix}\n 3&-3&0\\\\1&-1&0\\\\2&1&1\n\\end{pmatrix}\\begin{pmatrix}\n -2\\\\1\\\\2\n\\end{pmatrix}=\\begin{pmatrix}\n -9\\\\-3\\\\-1\n\\end{pmatrix}"
Im (v) = (-9,-3,-1)
iii) rref "A=\\begin{pmatrix}1&0&\\frac{1}{3}\\\\0&1&\\frac{1}{3}\\\\0&0&0\n \n\\end{pmatrix}"
"\\begin{pmatrix}\n 1&0&\\frac{1}{3}\\\\\n 0&1&\\frac{1}{3}\\\\0&0&0\n\\end{pmatrix}\\begin{pmatrix}a\\\\\n b\\\\c\n\\end{pmatrix}=[0]"
"a=-\\frac{1}{3}c\\quad b=-\\frac{1}{3}c"
Let "c=t"
Ker "A=[\\begin{bmatrix}\n -\\frac{1}{3}\\\\\n -\\frac{1}{3}\\\\1\n\\end{bmatrix}t ]\\quad t\\in\\reals"
iii). Rank of T= dim(column space (T)
=2
Comments
Leave a comment