Question #258813

Let W={(X,Y,Z)|x+y+z=0}

A, give a basis for W

B, what is the dimension of W



1
Expert's answer
2021-11-01T19:01:07-0400

Part A


x+y+z=0x+y+z=0\>

    x=yz\implies\>x=-y-z


(yzyz)\begin{pmatrix} -y&-z \\ y \\ z \end{pmatrix} =y(110)y\begin{pmatrix} -1 \\ 1 \\ 0 \end{pmatrix} +z(101)z\begin{pmatrix} -1 \\ 0\\ 1 \end{pmatrix}


rref of (111001)\begin{pmatrix} -1 & -1 \\ 1 & 0\\ 0&1 \end{pmatrix} =(100100)\begin{pmatrix} 1& 0 \\ 0 & 1\\ 0&0 \end{pmatrix}


Basis are [(110)\begin{pmatrix} -1 \\ 1\\ 0 \end{pmatrix} , (101)\begin{pmatrix} -1 \\ 0\\ 1 \end{pmatrix} ]



Part 2

Number of linearly independent columns in WW is 2

\therefore The dimension of W =2



Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

No comments. Be the first!
LATEST TUTORIALS
APPROVED BY CLIENTS