A, give a basis for W
B, what is the dimension of W
Part A
x+y+z=0 x+y+z=0\>x+y+z=0
⟹ x=−y−z\implies\>x=-y-z⟹x=−y−z
(−y−zyz)\begin{pmatrix} -y&-z \\ y \\ z \end{pmatrix}⎝⎛−yyz−z⎠⎞ =y(−110)y\begin{pmatrix} -1 \\ 1 \\ 0 \end{pmatrix}y⎝⎛−110⎠⎞ +z(−101)z\begin{pmatrix} -1 \\ 0\\ 1 \end{pmatrix}z⎝⎛−101⎠⎞
rref of (−1−11001)\begin{pmatrix} -1 & -1 \\ 1 & 0\\ 0&1 \end{pmatrix}⎝⎛−110−101⎠⎞ =(100100)\begin{pmatrix} 1& 0 \\ 0 & 1\\ 0&0 \end{pmatrix}⎝⎛100010⎠⎞
Basis are [(−110)\begin{pmatrix} -1 \\ 1\\ 0 \end{pmatrix}⎝⎛−110⎠⎞ , (−101)\begin{pmatrix} -1 \\ 0\\ 1 \end{pmatrix}⎝⎛−101⎠⎞ ]
Part 2
Number of linearly independent columns in WWW is 2
∴\therefore∴ The dimension of W =2
Need a fast expert's response?
and get a quick answer at the best price
for any assignment or question with DETAILED EXPLANATIONS!
Comments