Write v = (2, -5 , 3) as a linear combination of
u1=(1,−3 ,2)
u2=(2,−4 ,−1)
u3=(1,−3 , 7)
Let "x_1u_1+x_2u_2+x_3u_3=v\\quad x\\in\\reals"
"\\begin{bmatrix}\n 1&2&1 \\\\\n -3&-4&-3\\\\2&-1&7\n\\end{bmatrix}\\begin{bmatrix}\n x_1 \\\\\n x_2\\\\x_3\n\\end{bmatrix}=\\begin{bmatrix}\n 2 \\\\-5\\\\3\n \n\\end{bmatrix}"
Considering augmented matrix "A" for this system and applying Gauss- Jordan elimination
"A=\\begin{matrix}\n |&1&2&1\\\\|&-3&-4&-3&\\\\|&2&-1&7\n\\end{matrix}\\begin{vmatrix}\n 2\\\\-5\\\\3\n \n\\end{vmatrix}"
"-\\frac{1}{3}" "R_2-R_1\\to\\>R_2"
"\\begin{matrix}\n |&1&2&1 \\\\\n |&0&-\\frac{2}{3} & 0\\\\\n|&1&-\\frac{1}{2}&\\frac{7}{2}\n\\end{matrix}\\begin{vmatrix}\n 2\\\\\n -\\frac{1}{3}\\\\\n\\frac{3}{2}\n\\end{vmatrix}"
"\\frac{1}{2}\\>R_3-R_1\\>\\to\\>R_2"
"\\begin{matrix}\n |&1&2&1 \\\\\n |&0&-\\frac{2}{3}&0 \\\\\n|&0&-\\frac{5}{2}&\\frac{5}{2}\n\\end{matrix}\\begin{vmatrix}\n 2 \\\\\n -\\frac{1}{3} \\\\\n-\\frac{1}{2}\n\\end{vmatrix}"
"-\\frac{3}{2}\\>R_2\\to\\>R_2" "\\begin{matrix}\n |&1&2&1 \\\\\n |&0&1&0 \\\\\n|&0&-\\frac{5}{2}&\\frac{5}{2}\n\\end{matrix}\\begin{vmatrix}\n 2 \\\\\n \\frac{1}{2} \\\\\n-\\frac{1}{2}\n\\end{vmatrix}"
"-\\frac{2}{5}R_3-R_2\\to\\>R_3"
"\\begin{matrix}\n |&1&2&1 \\\\\n |&0&1&0 \\\\\n|&0&0&-1\n\\end{matrix}\\begin{vmatrix}\n 2 \\\\\n \\frac{1}{2} \\\\\n-\\frac{3}{10}\n\\end{vmatrix}"
"-1" "R_3\\to\\>R_3" "\\begin{matrix}\n |&1&2&1 \\\\\n |&0&1&0 \\\\\n|&0&0&1\n\\end{matrix}\\begin{vmatrix}\n 2 \\\\\n \\frac{1}{2}\\\\\n\\frac{3}{10}\n\\end{vmatrix}"
"R_1-R_3\\to\\>R_1" "\\begin{matrix}\n |&1&2&0 \\\\\n |&0&1&0\\\\\n|&0&0&1\n\\end{matrix}\\begin{vmatrix}\n 2 \\\\\n \\frac{1}{2} \\\\\n\\frac{3}{10}\n\\end{vmatrix}"
"R_1-2R_2\\to\\>R_1" "\\begin{matrix}\n |&1&0&0 \\\\\n |&0&1&0 \\\\\n|&0&0&1\n\\end{matrix}\\begin{vmatrix}\n \\frac{7}{10} \\\\\n \\frac{1}{2} \\\\\n\\frac{3}{10}\n\\end{vmatrix}"
rref "A=" "\\begin{matrix}|&\n 1&0&0 \\\\|&\n 0&1&0\\\\|&0&0&1\n\\end{matrix}\\begin{vmatrix}\n \\frac{7}{10}\\\\\\frac{1}{2}\\\\\\frac{3}{10}\n \n\\end{vmatrix}"
"\\implies x_1=\\frac{7}{10}\\quad x_2=\\frac{1}{2} \\quad x_3=\\frac{3}{10}"
"v=\\frac{7}{10}u_1+\\frac{1}{2}u_2+\\frac{3}{10}u_3"
Comments
Leave a comment