Consider the linear eigenproblem Ax=Ξ»x for the matrix
D=[1 1 2
2 1 1
1 1 3 ]
1. Solve for the largest (in magnitude) eigenvalue of the matrix and the corresponding eigenvector by the power method with π₯(0)T=[1 0 0]
2. Solve for the smallest eigenvalue of the matrix and the corresponding eigenvector by the inverse power method using the matrix inverse. Use Gauss-Jordan elimination to find the matrix inverse.
1st Iteration;
"Dx_0=" "\\begin{pmatrix}\n 1&1&2 \\\\\n 2&1& 1\\\\\n1&1&3\n\\end{pmatrix}\\begin{pmatrix}\n 1 \\\\\n 0\\\\\n0\n\\end{pmatrix}=\\begin{pmatrix}\n 1 \\\\\n 2 \\\\\n1\n\\end{pmatrix}"
"x_1=\\frac{1}{2}\\begin{pmatrix}\n 1 \\\\\n 2\\\\\n1\n\\end{pmatrix}=\\begin{pmatrix}\n 0.5\\\\\n 1\\\\\n0.5\n\\end{pmatrix}"
2nd Iteration
"Dx_1=\\begin{pmatrix}\n 1&1&2 \\\\\n 2&1& 1\\\\\n1&1&3\n\\end{pmatrix}\\begin{pmatrix}\n 0.5 \\\\\n 1 \\\\\n0.5\n\\end{pmatrix}=\\begin{pmatrix}\n 2.5 \\\\\n 2.5 \\\\\n3\n\\end{pmatrix}"
"x_2=\\frac{1}{3}\\begin{pmatrix}\n 2.5 \\\\\n 2.5 \\\\\n3\n\\end{pmatrix}=\\begin{pmatrix}\n 0.83 \\\\\n 0.83\\\\\n1\n \n\\end{pmatrix}"
3rd Iteration
"Dx_2=\\begin{pmatrix}\n 1&1&2 \\\\\n 2&1 & 1\\\\\n1&1&3\n\\end{pmatrix}\\begin{pmatrix}\n 0.83 \\\\\n 0.83 \\\\\n1\n\\end{pmatrix}=\\begin{pmatrix}\n 3.67 \\\\\n 3.5 \\\\\n4.67\n\\end{pmatrix}"
"x_3=\\frac{1}{4.67}\\begin{pmatrix}\n 3.67 \\\\\n 3.5\\\\\n4.67\n\\end{pmatrix}=\\begin{pmatrix}\n 0.79 \\\\\n 0.75 \\\\\n1\n\\end{pmatrix}"
4th Iteration
"Dx_3=\\begin{pmatrix}\n 1&1 & 2 \\\\\n 2&1 & 1\\\\\n1&1&3\n\\end{pmatrix}\\begin{pmatrix}\n 0.79 \\\\\n 0.75\\\\\n1\n\\end{pmatrix}=\\begin{pmatrix}\n 3.54 \\\\\n 3.32 \\\\\n4.54\n\\end{pmatrix}"
"x_4=\\frac{1}{4.54}\\begin{pmatrix}\n 3.54 \\\\\n 3.32 \\\\\n4.54\n\\end{pmatrix}=\\begin{pmatrix}\n 0.78 \\\\\n 0.73\\\\\n1\n \n\\end{pmatrix}"
5th Iteration
"Dx_4=\\begin{pmatrix}\n 1&1 & 2 \\\\\n 2&1 & 1\\\\\n1&1&3\n\\end{pmatrix}\\begin{pmatrix}\n 0.78\\\\\n 0.73 \\\\\n1\n\\end{pmatrix}=\\begin{pmatrix}\n 3.51 \\\\\n 3.29\\\\\n4.51\n\\end{pmatrix}"
"x_5=\\frac{1}{4.51}\\begin{pmatrix}\n 3.51 \\\\\n 3.29 \\\\\n4.51\n\\end{pmatrix}=\\begin{pmatrix}\n 0.78 \\\\\n 0.73 \\\\\n1\n\\end{pmatrix}"
6th Iteration
"Dx_5=\\begin{pmatrix}\n 1&1 & 2\\\\\n 2&1& 1\\\\\n1&1&3\n\\end{pmatrix}\\begin{pmatrix}\n 0.78 \\\\\n 0.73 \\\\\n1\n\\end{pmatrix}=\\begin{pmatrix}\n 3.51 \\\\\n 3.29\\\\\n4.51\n\\end{pmatrix}"
"x_6=\\frac{1}{4.51}\\begin{pmatrix}\n 3.51 \\\\\n 3.29 \\\\\n4.51\n\\end{pmatrix}=\\begin{pmatrix}\n \n\n0.78 \\\\\n \n 0.73\\\\\n1\n\\end{pmatrix}"
"\\therefore" The dominant eigenvalue "\\lambda=4.51"
and the dominant eigenvector is
"\\begin{pmatrix}\n 0.78 \\\\\n 0.73 \\\\\n1\n\\end{pmatrix}"
D-1 by Gaus - Jordan Elimination
Augmenting "D" with a "3\u00d73" identity matrix
"\\begin{bmatrix}\n 1&1&2| 1&0&0 \\\\\n 2&1&1|0&1&0 \\\\\n1&1&3|0&0&1\n\\end{bmatrix}"
"\\frac{1}{2}R_2-R_1\\to\\>R_2"
"\\begin{bmatrix}\n 1&1 & 2| 1&0&0\\\\\n 0&\\frac{-1}{2}& \\frac{-3}{2}\\>\\>\\>|-1&\\frac{1}{2}&0\\\\\n-1&1&3|0&0&1\n\\end{bmatrix}"
"R_3-R_1\\to\\>R_3"
"\\begin{bmatrix}\n 1&1&2\\>\\>\\>| 2&0&0\\\\\n 0&\\frac{-1}{2} &\\>\\> \\frac{-3}{2}\\>\\>\\>\\>\\>|-1&\\frac{1}{2}&0\\\\\n0&0&\\>\\>1\\>\\>\\>\\>\\>\\>\\>\\>|-1&0&1\n\\end{bmatrix}"
"-2R_2-3R_3\\to\\>R_2"
"\\begin{bmatrix}\n 1&1&2 |1&0&0 \\\\\n 0&1&0 |5&-1&-3\\\\\n0&0&\\>1\\>\\>\\>\\>\\>|-1&0&1\n\\end{bmatrix}"
"R_1-2R_3\\to\\>R_1"
"\\begin{bmatrix}\n 1&1 & 0|3&0&-2\\\\\n 0&1&0| 5&-1&-3\\\\\n0&0&\\>\\>-1|-1&0&1\n\\end{bmatrix}"
"R_1-R_2\\to\\>R_1"
"\\begin{bmatrix}\n 1&0&\\>\\>\\>\\>0 | \\quad-2&1&1\\\\\n 0&1&0|\\quad 5&-1&-3\\\\\n0&0&1|-1&0&1\n\\end{bmatrix}"
D-1 is the right side of Augmented matrix
"D^{-1}=\\begin{pmatrix}\n -2&1&1 \\\\\n 5&-1&-3 \\\\\n-1&0&1\n\\end{pmatrix}"
Solving for the largest eigenvalue of D-1
1st Iteration
"D^{-1}x_0=\\begin{pmatrix}\n -2&1 & 1\\\\\n 5&-1 & -3\\\\\n-1&0&1\n\\end{pmatrix}\\begin{pmatrix}\n 1 \\\\\n 0 \\\\\n0\n\\end{pmatrix}=\\begin{pmatrix}\n -2 \\\\\n 5 \\\\\n-1\n\\end{pmatrix}"
"x_1=\\frac{1}{5}\\begin{pmatrix}\n -2 \\\\\n 5 \\\\\n-1\n\\end{pmatrix}=\\begin{pmatrix}\n -0.4 \\\\\n 1\\\\\n-0.2\n\\end{pmatrix}"
2nd Iteration
"D^{-1}x_1=\\begin{pmatrix}\n -2&1 & 1\\\\\n 5&-1 & -3\\\\\n-1&0&1\n\\end{pmatrix}\\begin{pmatrix}\n -0.4 \\\\\n 1\\\\\n-0.2\n\\end{pmatrix}=\\begin{pmatrix}\n 1.6 \\\\\n -2.4 \\\\\n0.2\n\\end{pmatrix}"
"x_2=\\frac{1}{2.4}\\begin{pmatrix}\n 1.6 \\\\\n -2.4 \\\\\n0.2\n\\end{pmatrix}=\\begin{pmatrix}\n 0.67 \\\\\n -1 \\\\\n0.08\n\\end{pmatrix}"
3rd Iteration
"D^-x_2=\\begin{pmatrix}\n -2&1&1 \\\\\n 5&-1 & -3\\\\\n-1&0&1\n\\end{pmatrix}\\begin{pmatrix}\n 0.67 \\\\\n -1 \\\\\n0.08\n\\end{pmatrix}=\\begin{pmatrix}\n -2.25 \\\\\n 4.08\\\\\n-0.58\n\\end{pmatrix}"
"x_3=\\frac{1}{4.08}\\begin{pmatrix}\n -2.25 \\\\\n 4.08 \\\\\n-0.58\n\\end{pmatrix}=\\begin{pmatrix}\n -0.55 \\\\\n 1 \\\\\n-0.14\n\\end{pmatrix}"
4th Iteration
"D^-x_3=\\begin{pmatrix}\n -2&1 & 1 \\\\\n 5&-1& -3\\\\\n-1&0&1\n\\end{pmatrix}\\begin{pmatrix}\n -0.55 \\\\\n 1 \\\\\n-0.14\n\\end{pmatrix}=\\begin{pmatrix}\n 1.96 \\\\\n -3.33 \\\\\n0.41\n\\end{pmatrix}"
"x_4=\\frac{1}{3.33}\\begin{pmatrix}\n 1.96 \\\\\n -3.33\\\\\n0.41\n\\end{pmatrix}=\\begin{pmatrix}\n 0.59 \\\\\n -1 \\\\\n0.12\n\\end{pmatrix}"
5th Iteration
"D^-x_4=\\begin{pmatrix}\n -2&1 & 1 \\\\\n 5&-1& -3\\\\\n-1&0&1\n\\end{pmatrix}\\begin{pmatrix}\n 0.59 \\\\\n -1\\\\\n0.12\n\\end{pmatrix}=\\begin{pmatrix}\n -2.06 \\\\\n 3.58 \\\\\n-0.47\n\\end{pmatrix}"
"x_5=\\frac{1}{3.58}\\begin{pmatrix}\n -2.06 \\\\\n 3.58 \\\\\n-0.47\n\\end{pmatrix}=\\begin{pmatrix}\n -0.57 \\\\\n 1 \\\\\n-0.13\n\\end{pmatrix}"
6th Iteration
"D^{-1}x_5=\\begin{pmatrix}\n -2&1 & 1 \\\\\n 5&-1& -3\\\\\n-1&0&1\n\\end{pmatrix}\\begin{pmatrix}\n -0.57 \\\\\n 1 \\\\\n-0.13\n\\end{pmatrix}=\\begin{pmatrix}\n 2.02 \\\\\n -3.48 \\\\\n0.44\n\\end{pmatrix}"
"x_6=\\frac{1}{3.48}\\begin{pmatrix}\n 2.02\\\\\n -3.48 \\\\\n0.44\n\\end{pmatrix}=\\begin{pmatrix}\n 0.58 \\\\\n -1 \\\\\n0.13\n\\end{pmatrix}"
8th Iteration
"D^{-1}x_7=\\begin{pmatrix}\n -2&1 & 1 \\\\\n 5&-1 & -3\\\\\n-1&0&1\n\\end{pmatrix}\\begin{pmatrix}\n -0.58 \\\\\n 1\\\\\n-0.13\n\\end{pmatrix}=\\begin{pmatrix}\n 2.03 \\\\\n -3.5 \\\\\n0.45\n\\end{pmatrix}"
"x_8=\\frac{1}{3.5}\\begin{pmatrix}\n 2.03 \\\\\n -3.5 \\\\\n0.45\n\\end{pmatrix}=\\begin{pmatrix}\n 0.58 \\\\\n -1 \\\\\n0.13\n\\end{pmatrix}"
9th Iteration
"D^{-1}x_8=\\begin{pmatrix}\n -2&1& 1\\\\\n 5&-1 & -3\\\\\n-1&0&1\n\\end{pmatrix}\\begin{pmatrix}\n 0.58 \\\\\n -1 \\\\\n0.13\n\\end{pmatrix}=\\begin{pmatrix}\n -2.03 \\\\\n 3.51 \\\\\n-0.45\n\\end{pmatrix}"
"x_9=\\frac{1}{3.51}\\begin{pmatrix}\n -2.03 \\\\\n 3.51 \\\\\n-0.45\n\\end{pmatrix}=\\begin{pmatrix}\n 0.58 \\\\\n 1 \\\\\n-0.13\n\\end{pmatrix}"
10th Iteration
D"^-x_9=\\begin{pmatrix}\n -2&1 & 1\\\\\n 5&-1 & -3\\\\\n-1&0&1\n\\end{pmatrix}\\begin{pmatrix}\n 0.58 \\\\\n -1 \\\\\n0.13\n\\end{pmatrix}=\\begin{pmatrix}\n 2.03 \\\\\n -3.51\\\\\n0.45\n\\end{pmatrix}"
"x_{10}=\\frac{1}{3.51}\\begin{pmatrix}\n 2.03 \\\\\n -3.51 \\\\\n0.45\n\\end{pmatrix}=\\begin{pmatrix}\n 0.58 \\\\\n -1\\\\\n0.13\n\\end{pmatrix}"
The dominant eigenvalue of D- "3.51"
The magnitude of the smallest eigenvalues of "D=\\frac{1}{3.51}=0.2849"
and the corresponding eigenvector of
"D=\\begin{pmatrix}\n 0.58\\\\\n -1 \\\\\n0.13\n\\end{pmatrix}"
Comments
Leave a comment