In each of the following cases explain whether R2"\\to" R is a linear transformation, if it is, supply a proof, if not, supply a counter ample
a) T(a, b) =a + b
b) T(a, b) =ab
c) T(a, b) =|a|2
d) T(a, b) =a - b
for linear transformation:
"T(a+b)=T(a)+T(b)"
"T(ka)=kT(a)"
a)
"T((a_1,b_1)+(a_2,b_2))=T((a_1+a_2),(b_1+b_2))=a_1+a_2+b_1+b_2"
"T(a_1,b_1)+T(a_2,b_2)=a_1+b_1+a_2+b_2"
"T(k(a,b))=ka+kb=k(a+b)=kT(a,b)"
this is a linear transformation
b)
"T((a_1,b_1)+(a_2,b_2))=T((a_1+a_2),(b_1+b_2))=(a_1+a_2),(b_1+b_2)"
"T(a_1,b_1)+T(a_2,b_2)=a_1b_1+a_2b_2"
this is not a linear transformation
for example: "a_1=1,a_2=2,b_1=3,b_2=4"
"T((a_1,b_1)+(a_2,b_2))=21\\neq T(a_1,b_1)+T(a_2,b_2)=11"
c)
"T((a_1,b_1)+(a_2,b_2))=T((a_1+a_2),(b_1+b_2))=|a_1+a_2|^2"
"T(a_1,b_1)+T(a_2,b_2)=|a_1|^2+|a_2|^2"
this is not a linear transformation
for example: "a_1=1,a_2=2,b_1=3,b_2=4"
"T((a_1,b_1)+(a_2,b_2))=9\\neq T(a_1,b_1)+T(a_2,b_2)=5"
d)
"T((a_1,b_1)+(a_2,b_2))=T((a_1+a_2),(b_1+b_2))=a_1+a_2-b_1-b_2"
"T(a_1,b_1)+T(a_2,b_2)=a_1-b_1+a_2-b_2"
"T(k(a,b))=ka-kb=k(a-b)=kT(a,b)"
this is a linear transformation
Comments
Leave a comment