Answer to Question #264358 in Linear Algebra for Alish

Question #264358

 In each of the following cases explain whether R2\to R is a linear transformation, if it is, supply a proof, if not, supply a counter ample

a) T(a, b) =a + b

b) T(a, b) =ab

c) T(a, b) =|a|2

d) T(a, b) =a - b



1
Expert's answer
2021-11-16T16:05:09-0500

for linear transformation:

T(a+b)=T(a)+T(b)T(a+b)=T(a)+T(b)

T(ka)=kT(a)T(ka)=kT(a)


a)

T((a1,b1)+(a2,b2))=T((a1+a2),(b1+b2))=a1+a2+b1+b2T((a_1,b_1)+(a_2,b_2))=T((a_1+a_2),(b_1+b_2))=a_1+a_2+b_1+b_2

T(a1,b1)+T(a2,b2)=a1+b1+a2+b2T(a_1,b_1)+T(a_2,b_2)=a_1+b_1+a_2+b_2

T(k(a,b))=ka+kb=k(a+b)=kT(a,b)T(k(a,b))=ka+kb=k(a+b)=kT(a,b)

this is a linear transformation


b)

T((a1,b1)+(a2,b2))=T((a1+a2),(b1+b2))=(a1+a2),(b1+b2)T((a_1,b_1)+(a_2,b_2))=T((a_1+a_2),(b_1+b_2))=(a_1+a_2),(b_1+b_2)

T(a1,b1)+T(a2,b2)=a1b1+a2b2T(a_1,b_1)+T(a_2,b_2)=a_1b_1+a_2b_2

this is not a linear transformation

for example: a1=1,a2=2,b1=3,b2=4a_1=1,a_2=2,b_1=3,b_2=4

T((a1,b1)+(a2,b2))=21T(a1,b1)+T(a2,b2)=11T((a_1,b_1)+(a_2,b_2))=21\neq T(a_1,b_1)+T(a_2,b_2)=11


c)

T((a1,b1)+(a2,b2))=T((a1+a2),(b1+b2))=a1+a22T((a_1,b_1)+(a_2,b_2))=T((a_1+a_2),(b_1+b_2))=|a_1+a_2|^2

T(a1,b1)+T(a2,b2)=a12+a22T(a_1,b_1)+T(a_2,b_2)=|a_1|^2+|a_2|^2

this is not a linear transformation

for example: a1=1,a2=2,b1=3,b2=4a_1=1,a_2=2,b_1=3,b_2=4

T((a1,b1)+(a2,b2))=9T(a1,b1)+T(a2,b2)=5T((a_1,b_1)+(a_2,b_2))=9\neq T(a_1,b_1)+T(a_2,b_2)=5


d)

T((a1,b1)+(a2,b2))=T((a1+a2),(b1+b2))=a1+a2b1b2T((a_1,b_1)+(a_2,b_2))=T((a_1+a_2),(b_1+b_2))=a_1+a_2-b_1-b_2

T(a1,b1)+T(a2,b2)=a1b1+a2b2T(a_1,b_1)+T(a_2,b_2)=a_1-b_1+a_2-b_2

T(k(a,b))=kakb=k(ab)=kT(a,b)T(k(a,b))=ka-kb=k(a-b)=kT(a,b)

this is a linear transformation


Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

No comments. Be the first!

Leave a comment