Question #265992

Find the number of ordered pairs (x;y) of positive integers satisfying 1/x + 1/y = 1/(2021 ^ 17)


If x ≠ y then pairs (x;y) and (y;x) are considered to be different.


1
Expert's answer
2021-11-15T17:45:31-0500

x+yxy=1202117\frac{x+y}{xy}=\frac{1}{2021^{17}}


xy202117(x+y)=0xy-2021^{17}(x+y)=0


Adding (202117)2(2021^{17})^2 both sides


xy202217(x+y)+(202117)2=(202117)2xy-2022^{17}(x+y)+(2021^{17})^2=(2021^{17})^2


(x202117)(y202117)=(202117)2(x-2021^{17})(y-2021^{17})=(2021^{17})^2


Let x202117=Ax-2021^{17}=A and y202117=By-2021^{17}=B


AB=(202117)2\therefore\>AB=(2021^{17})^2


(202117)2=4334×4734(2021^{17})^2=43^{34}×47^{34}


Number of factors == (34+1)(34+1)(34+1)(34+1)

=1225=1225


In one case A=BA=B


\therefore Number of ordered pairs =1224=1224


Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

No comments. Be the first!
LATEST TUTORIALS
APPROVED BY CLIENTS