Find the number of ordered pairs (x;y) of positive integers satisfying 1/x + 1/y = 1/(2021 ^ 17)
If x ≠ y then pairs (x;y) and (y;x) are considered to be different.
"\\frac{x+y}{xy}=\\frac{1}{2021^{17}}"
"xy-2021^{17}(x+y)=0"
Adding "(2021^{17})^2" both sides
"xy-2022^{17}(x+y)+(2021^{17})^2=(2021^{17})^2"
"(x-2021^{17})(y-2021^{17})=(2021^{17})^2"
Let "x-2021^{17}=A" and "y-2021^{17}=B"
"\\therefore\\>AB=(2021^{17})^2"
"(2021^{17})^2=43^{34}\u00d747^{34}"
Number of factors "=" "(34+1)(34+1)"
"=1225"
In one case "A=B"
"\\therefore" Number of ordered pairs "=1224"
Comments
Leave a comment