Consider the basis for , where , , and , and let t:R^3 -> R^2 be the linear transformation for which T(v1)=(-1,0), T(v2)=(-1,1), T(v3)=(0,1). Find a formula for T(x1, x2, x3), and use that formula to find T(7,13,7)
"T" - linear transformation:
"T(u+v)=T(u)+T(v)"
"T(ku)=kT(u)"
1.
"v=(x_1,x_2) \\in \\mathbb{R} ^2" - arbitrary vector.
It can be expressed as a linear combination of "v_1" and "v_2":
"v=av_1+bv_2"
"(x_1,x_2)=a(-2,1)+b(1,3)=(-2a+b,a+3b)"
"\\begin{cases}\nx_1=-2a+b \\\\ x_2=a+3b\n\\end{cases}\n\\; \\;\n\\begin{cases}\nx_1+2x_2=7b\\\\ x_2=a+3b\n\\end{cases}\n\\begin{cases}\nb=\\frac{x_1}{7}+\\frac{2x_2}{7} \\\\a=\\frac{-3x_1}{7}+\\frac{x_2}{7}\n\\end{cases}"
"T(v)=T(av_1+bv_2)=aT(v_1)+bT(v_2)=a(-1,2,0)+b(0,-3,5)="
"=(\\frac{-3x_1}{7}+\\frac{x_2}{7})(-1,2,0)+(\\frac{x_1}{7}+\\frac{2x_2}{7} )(0,-3,5)="
"=(\\frac{3x_1}{7}+\\frac{-x_2}{7} , \\frac{-9x_1}{7}+\\frac{-4x_2}{7} , \\frac{5x_1}{7}+\\frac{10x_2}{7})=\n\\frac{1}{7}(3x_1-x_2,-9x_1-4x_2,5x_1+10x_2)"
"T(2,-3)=\\frac{1}{7}(9,-6,-20)=(\\frac{9}7,-\\frac{6}7,-\\frac{20}7)"
2.
"v=(x_1,x_2,x_3)\\in \\mathbb{R}^3" - arbitrary vector
It can bee expressed as a linear combination of "v_1,v_2,v_3:"
"v=av_1+bv_2+cv_3"
"(x_1,x_2,x_3)=a(1,1,1)+b(1,1,0)+c(1,0,0)=(a+b+c,a+b,a)"
"\\begin{cases}\nx_1=a+b+c \\\\\nx_2=a+b \\\\\nx_3=a\n\\end{cases}\n\n\\begin{cases}\na=x_3 \\\\ b=x_2-x_3 \\\\ c= x_1-x_2\n\\end{cases}"
"T(v)=T(av_1+bv_2+cv_3)=aT(v_1) +bT(v_2)+cT(v_3)="
"=a(3,-1,6)+b(4,0,1)+c(-1,7,1)="
"= x_3(3,-1,6)+(x_2-x_3)(4,0,1)+(x_1-x_2)(-1,7,1)="
"=(-x_1+5x_2-x_3,7x_1-7x_2-x_3, x_1+5x_3)"
"T(3,6,-1)=(28,-20,-2)"
3.
"T(4v_1-5v_2+6v_3)=4T(v_1)-5T(v_2)+6T(v_3)="
"=4(1,-1,2)-5(0,3,2)+6(-3,1,2)=(-14,-13,10)"
Comments
Leave a comment