Let A be a 2 x 2 matrix. Show that some non-trivial linear combination of A^4, A^3, A^2, A. and I2 is equal 0. Generalize to n x n matrices. Note that I2 is 2 x 2 identity matrix.
Let "A=I=\\begin{bmatrix}\n 1 & 0 \\\\\n 0 & 1\n\\end{bmatrix}" "(2\\times 2 \\ matrix)"
"\\therefore A^4=A^3=A^2=I=\\begin{bmatrix}\n 1 & 0 \\\\\n 0 & 1\n\\end{bmatrix}"
Linear Combination:
"aA^4+bA^3+cA^2+dA+eI^2=0"
"\\Rightarrow (a+b+c+d+e)\\begin{bmatrix}\n 1 & 0 \\\\\n 0 & 1\n\\end{bmatrix}=0"
"\\therefore a+b+c+d+e=0"
Now, solving for "(n\\times n \\ matrix):"
Let "A= I_n=\\begin{bmatrix}\n 1 & 0 & 0& 0& 0& 0& 0 .......& 0\\\\\n 0 & 1 & 0& 0& 0& 0& 0.......& 0\\\\\n0 & 0 & 1& 0& 0& 0& 0.......& 0\\\\\n.\n\\\\\n.\n\\\\\n.\n\\\\\n.\n0 & 0 & 0& 0& 0& 0& 0.......& 1\\\\\n\n\n\\end{bmatrix}"
"\\therefore A^4=A^3=A^2=A= I_n=\\begin{bmatrix}\n 1 & 0 & 0& 0& 0& 0& 0 .......& 0\\\\\n 0 & 1 & 0& 0& 0& 0& 0.......& 0\\\\\n0 & 0 & 1& 0& 0& 0& 0.......& 0\\\\\n.\n\\\\\n.\n\\\\\n.\n\\\\\n.\n0 & 0 & 0& 0& 0& 0& 0.......& 1\\\\\n\n\n\\end{bmatrix}"
Linear Combination:
"aA^4+bA^3+cA^2+dA+eI_n^2=0"
"\\Rightarrow (a+b+c+d+e)\\begin{bmatrix}\n 1 & 0 & 0& 0& 0& 0& 0 .......& 0\\\\\n 0 & 1 & 0& 0& 0& 0& 0.......& 0\\\\\n0 & 0 & 1& 0& 0& 0& 0.......& 0\\\\\n.\n\\\\\n.\n\\\\\n.\n\\\\\n.\n0 & 0 & 0& 0& 0& 0& 0.......& 1\\\\\n\n\n\\end{bmatrix}=0"
"\\therefore a+b+c+d+e=0"
Comments
Leave a comment