Answer to Question #240525 in Linear Algebra for mds

Question #240525

Given               B 2 31 2 21 1 32 find the eigenvalues of B and an eigenvector for B corresponding to  1.


1
Expert's answer
2021-09-22T23:57:19-0400
B=(231221132)B=\begin{pmatrix} 2 & 3 & 1 \\ 2 & 2 & 1 \\ 1 & 3 &2 \end{pmatrix}

BλI=(2λ3122λ1132λ)B-\lambda I=\begin{pmatrix} 2-\lambda & 3 & 1 \\ 2 & 2-\lambda & 1 \\ 1 & 3 & 2-\lambda \end{pmatrix}

2λ3122λ1132λ\begin{vmatrix} 2-\lambda & 3 & 1 \\ 2 & 2-\lambda & 1 \\ 1 & 3 & 2-\lambda \end{vmatrix}

=(2λ)2λ132λ32112λ+122λ13=(2-\lambda)\begin{vmatrix} 2-\lambda & 1 \\ 3 & 2-\lambda \end{vmatrix}-3\begin{vmatrix} 2 & 1 \\ 1 & 2-\lambda \end{vmatrix}+1\begin{vmatrix} 2 & 2-\lambda \\ 1 & 3 \end{vmatrix}

=(2λ)33(2λ)6(2λ)+3+6(2λ)=(2-\lambda)^3-3(2-\lambda)-6(2-\lambda)+3+6-(2-\lambda)


=812λ+6λ2λ320+10λ+9=8-12\lambda+6\lambda^2-\lambda^3-20+10\lambda+9

=λ3+6λ22λ3=0=-\lambda^3+6\lambda^2-2\lambda-3=0

λ2(λ1)+5λ(λ1)+3(λ1)=0-\lambda^2(\lambda-1)+5\lambda(\lambda-1)+3(\lambda-1)=0

λ1=1\lambda_1=1

λ2+5λ+3=0-\lambda^2+5\lambda+3=0

D=(5)24(1)(3)=37D=(5)^2-4(-1)(3)=37

λ2=5+372=5+372\lambda_2=\dfrac{-5+\sqrt{37}}{-2}=-\dfrac{-5+\sqrt{37}}{2}

λ3=5372=5+372\lambda_3=\dfrac{-5-\sqrt{37}}{-2}=\dfrac{5+\sqrt{37}}{2}

Eigenvalues: 1,5+372,5+372.1, -\dfrac{-5+\sqrt{37}}{2}, \dfrac{5+\sqrt{37}}{2}.


λ=1\lambda=1



(2λ3122λ1132λ)=(131211131)\begin{pmatrix} 2-\lambda & 3 & 1 \\ 2 & 2-\lambda & 1 \\ 1 & 3 & 2-\lambda \end{pmatrix}=\begin{pmatrix} 1 & 3 & 1 \\ 2 & 1 & 1 \\ 1 & 3 & 1 \end{pmatrix}

R2=R22R1R_2=R_2-2R_1


(131051131)\begin{pmatrix} 1 & 3 & 1 \\ 0 & -5 & -1 \\ 1 & 3 & 1 \end{pmatrix}

R3=R3R1R_3=R_3-R_1


(131051000)\begin{pmatrix} 1 & 3 & 1 \\ 0 & -5 & -1 \\ 0 & 0 & 0 \end{pmatrix}

R2=R2/(5)R_2=R_2/(-5)


(131011/5000)\begin{pmatrix} 1 & 3 & 1 \\ 0 & 1 &1/5 \\ 0 & 0 & 0 \end{pmatrix}

R1=R13R2R_1=R_1-3R_2


(102/5011/5000)\begin{pmatrix} 1 & 0 & 2/5 \\ 0 & 1 &1/5 \\ 0 & 0 & 0 \end{pmatrix}

If we take v3=t,v_3=t, then v1=25t,v2=15t,v_1=-\dfrac{2}{5}t, v_2=-\dfrac{1}{5}t,

Thus


v=((2/5)t(1/5)tt)=(2/5)1/51)t\vec v=\begin{pmatrix} (-2/5)t \\ (-1/5)t \\ t \end{pmatrix}=\begin{pmatrix} -2/5)\\ -1/5 \\ 1 \end{pmatrix}t

Eigenvalue: 1,1, eigenvector (2/5)1/51).\begin{pmatrix} -2/5)\\ -1/5 \\ 1 \end{pmatrix}.


Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

No comments. Be the first!

Leave a comment