Given B 2 31 2 21 1 32 find the eigenvalues of B and an eigenvector for B corresponding to 1.
"B-\\lambda I=\\begin{pmatrix}\n 2-\\lambda & 3 & 1 \\\\\n 2 & 2-\\lambda & 1 \\\\\n1 & 3 & 2-\\lambda\n\\end{pmatrix}"
"\\begin{vmatrix}\n 2-\\lambda & 3 & 1 \\\\\n 2 & 2-\\lambda & 1 \\\\\n1 & 3 & 2-\\lambda\n\\end{vmatrix}"
"=(2-\\lambda)\\begin{vmatrix}\n 2-\\lambda & 1 \\\\\n 3 & 2-\\lambda\n\\end{vmatrix}-3\\begin{vmatrix}\n 2 & 1 \\\\\n 1 & 2-\\lambda\n\\end{vmatrix}+1\\begin{vmatrix}\n 2 & 2-\\lambda \\\\\n 1 & 3\n\\end{vmatrix}"
"=(2-\\lambda)^3-3(2-\\lambda)-6(2-\\lambda)+3+6-(2-\\lambda)"
"=-\\lambda^3+6\\lambda^2-2\\lambda-3=0"
"-\\lambda^2(\\lambda-1)+5\\lambda(\\lambda-1)+3(\\lambda-1)=0"
"\\lambda_1=1"
"-\\lambda^2+5\\lambda+3=0"
"D=(5)^2-4(-1)(3)=37"
"\\lambda_2=\\dfrac{-5+\\sqrt{37}}{-2}=-\\dfrac{-5+\\sqrt{37}}{2}"
"\\lambda_3=\\dfrac{-5-\\sqrt{37}}{-2}=\\dfrac{5+\\sqrt{37}}{2}"
Eigenvalues: "1, -\\dfrac{-5+\\sqrt{37}}{2}, \\dfrac{5+\\sqrt{37}}{2}."
"\\lambda=1"
"R_2=R_2-2R_1"
"R_3=R_3-R_1"
"R_2=R_2\/(-5)"
"R_1=R_1-3R_2"
If we take "v_3=t," then "v_1=-\\dfrac{2}{5}t, v_2=-\\dfrac{1}{5}t,"
Thus
Eigenvalue: "1," eigenvector "\\begin{pmatrix}\n -2\/5)\\\\\n -1\/5 \\\\\n 1\n\\end{pmatrix}."
Comments
Leave a comment