B=⎝⎛221323112⎠⎞
B−λI=⎝⎛2−λ2132−λ3112−λ⎠⎞
∣∣2−λ2132−λ3112−λ∣∣
=(2−λ)∣∣2−λ312−λ∣∣−3∣∣2112−λ∣∣+1∣∣212−λ3∣∣
=(2−λ)3−3(2−λ)−6(2−λ)+3+6−(2−λ)
=8−12λ+6λ2−λ3−20+10λ+9
=−λ3+6λ2−2λ−3=0
−λ2(λ−1)+5λ(λ−1)+3(λ−1)=0
λ1=1
−λ2+5λ+3=0
D=(5)2−4(−1)(3)=37
λ2=−2−5+37=−2−5+37
λ3=−2−5−37=25+37
Eigenvalues: 1,−2−5+37,25+37.
λ=1
⎝⎛2−λ2132−λ3112−λ⎠⎞=⎝⎛121313111⎠⎞ R2=R2−2R1
⎝⎛1013−531−11⎠⎞ R3=R3−R1
⎝⎛1003−501−10⎠⎞ R2=R2/(−5)
⎝⎛10031011/50⎠⎞ R1=R1−3R2
⎝⎛1000102/51/50⎠⎞If we take v3=t, then v1=−52t,v2=−51t,
Thus
v=⎝⎛(−2/5)t(−1/5)tt⎠⎞=⎝⎛−2/5)−1/51⎠⎞t Eigenvalue: 1, eigenvector ⎝⎛−2/5)−1/51⎠⎞.
Comments
Leave a comment