Consider the function y=tan(x)
(a) Show that the first two non-zero terms in the Maclaurin series of y are x+1/3x3...
(b) Use the first two terms of the Maclaurin series of y to estimate tan (1/3).
Maclaurin series of y(x) is
"y(x)=y(0)+y'(0)\\cdot x+y''(0)\\cdot x^2\/2+y'''(0)\\cdot x^3\/6+o(x^3)"
We have
y(0)=tan(0)=0;
y'(x)=tan'(x)="\\frac{1}{cos^2(x)}" ; y'(0)="\\frac{1}{cos^2(0)}=\\frac{1}{1}=1;"
y''(x)="\\left( \\frac{1}{cos^2(x)}\\right)'=\\frac{1'\\cdot cos^2(x)-1\\cdot cos^2(x))'}{cos^4(x)}=\\\\"
="\\frac{2\\cdot cos(x)\\cdot sin(x) }{cos^4(x)}=\\frac{2\\cdot sin(x)}{cos^3(x)};"
"y''(0)=\\frac{1\\cdot sin(0)}{cos^3(0)}=\\frac{2\\cdot 0}{1}=0;"
y'''(x)="\\left (\\frac{2\\cdot sin(x)}{cos^3(x)} \\right)'=\\frac\n{2\\cdot (sin(x))'\\cdot cos^3(x)-2\\cdot sin(x)\\cdot(cos^3(x))'}\n{cos^6(x)}=\\\\"
"=\\frac{2\\cdot cos^4(x)+6\\cdot sin^2(x)\\cdot cos^2(x)}{cos^6(x)}=\n\\frac{2}{cos^2(x)}-\\frac{6\\cdot tan^2(x)}{cos^2(x)};"
y'''(0)="\\frac{2}{cos^2(0)}-\\frac{6\\cdot tan^2(0)}{cos^2(0)}=\\frac{2}{1}-\\frac{6\\cdot 0}{1}=2"
Thus we have
y(x)=tan(x)="0+1\\cdot x+0\\cdot x^2\/2+2\\cdot x^3\/6+o(x^3)=x+\\frac{x^3}{3}+o(x^3)"
(b) Use the first two terms of the Maclaurin series of y to estimate tan (1/3)
tan(1/3)="\\frac{1}{3}+\\frac{\\left( \\frac{1}{3} \\right)^3}{3}=\\frac{1}{3}+\\frac{1}{81}=\n\\frac{28}{81}=0.345679" -approx value
Exat value with 6 digits:
Thus error rate=0.0006 "\\approx 0,001" by order
Comments
Leave a comment