Question #238268

1. The figure shows two bases, consisting of unit vectors, for ll?2: S —— (i,j) and 0 = (ut,ut).



(a) Find the transition matrix s B


(b) Find the transition matrix PB S


1
Expert's answer
2021-11-07T17:45:09-0500

Kindly Note

a) The figure referred to was not provided

b) There are typing errors.



Adjusting the conditions of the questions, and rewriting it as;


The figure show two basis for R2:S=(i,j)\reals^2:S=(i,j) and B=(u1,u2)B=(u_1',u_2')

a) Find the transition matrix PSBP_S\to\>_B

b) Find the transition matrix PBSP_B\to\>_S






Solution:


In reference to the figure, first basis S=(i,j)S=(i,j)

Where i=[10]i=\begin{bmatrix} 1 \\ 0 \end{bmatrix} ,j=[01]\quad\>j=\begin{bmatrix} 0 \\ 1 \end{bmatrix}


Second basis B(u1,u2)B(u'_1,u'_2)


Where u1=(120)u'_1=\begin{pmatrix} \frac{1}{2} \\ 0 \end{pmatrix} , u2=(12)u'_2= \begin{pmatrix} -1 \\ 2 \end{pmatrix}



a) Expressing elements of BB in terms of elements of SS



(120)\begin{pmatrix} \frac{1}{2} \\ 0 \end{pmatrix} =a(10)=a\begin{pmatrix} 1 \\ 0 \end{pmatrix} +b(01)+b\begin{pmatrix} 0 \\ 1 \end{pmatrix}


    a=12,b=0\implies a=\frac{1}{2},b=0



(12)\begin{pmatrix} -1 \\ 2 \end{pmatrix} =a(10)=a'\begin{pmatrix} 1 \\ 0 \end{pmatrix} +b(01)+b'\begin{pmatrix} 0\\ 1 \end{pmatrix}


    a=1,b=2\implies\>a'=-1,b'=2



\therefore Transition matrix is (aabb)\begin{pmatrix} a & a' \\ b& b' \end{pmatrix}


\therefore Transition matrix PSB=(12102)P_S\>\to_B=\begin{pmatrix} \frac{1}{2} & -1\\ 0& 2 \end{pmatrix}



b) Transition matrix PBSP_B\>\to\>S =(PSB)1=(P_S\to\>_B)^{-1}


(12102)\begin{pmatrix} \frac{1}{2} & -1 \\ 0& 2 \end{pmatrix} 1^{-1} =11(21012)= \frac{1}{1}\begin{pmatrix} 2 & 1 \\ 0 & \frac{1}{2} \end{pmatrix}


PBS\therefore P_B\to\>_S =(21012)= \begin{pmatrix} 2 & 1 \\ 0 & \frac{1}{2} \end{pmatrix}



Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

No comments. Be the first!
LATEST TUTORIALS
APPROVED BY CLIENTS