Given that:
v ⃗ = 4 i ^ + 9 j ^ + 19 k ^ , u ⃗ 1 = i ^ − 2 j ^ + 3 k ^ , u ⃗ 2 = 3 i ^ − 7 j ^ + 10 k ^ , u ⃗ 3 = 2 i ^ + j ^ + 9 k ^ \vec v=4\hat i +9\hat j+19\hat k, \vec u_1=\hat i-2\hat j+3\hat k,\\
\vec u_2=3\hat i-7\hat j+10\hat k,\vec u_3=2\hat i+\hat j+9\hat k\\ v = 4 i ^ + 9 j ^ + 19 k ^ , u 1 = i ^ − 2 j ^ + 3 k ^ , u 2 = 3 i ^ − 7 j ^ + 10 k ^ , u 3 = 2 i ^ + j ^ + 9 k ^
Let v ⃗ = x ( u ⃗ 1 ) + y ( u ⃗ 2 ) + z ( u ⃗ 3 ) \vec v=x(\vec u_1)+y(\vec u_2)+z(\vec u_3)\\ v = x ( u 1 ) + y ( u 2 ) + z ( u 3 )
⇒ 4 i ^ + 9 j ^ + 19 k ^ = x ( i ^ − 2 j ^ + 3 k ^ ) + y ( 3 i ^ − 7 j ^ + 10 k ^ ) + z ( 2 i ^ + j ^ + 9 k ^ ) ⇒ 4 i ^ + 9 j ^ + 19 k ^ = ( x + 3 y + 2 z ) i ^ + ( − 2 x − 7 y + z ) j ^ + ( 3 x + 10 y + 9 z ) k ^ \Rightarrow 4\hat i +9\hat j+19\hat k=x(\hat i-2\hat j+3\hat k)+y(3\hat i-7\hat j+10\hat k)+z(2\hat i+\hat j+9\hat k)\\
\Rightarrow4\hat i +9\hat j+19\hat k=(x+3y+2z)\hat i+(-2x-7y+z)\hat j+(3x+10y+9z)\hat k\\ ⇒ 4 i ^ + 9 j ^ + 19 k ^ = x ( i ^ − 2 j ^ + 3 k ^ ) + y ( 3 i ^ − 7 j ^ + 10 k ^ ) + z ( 2 i ^ + j ^ + 9 k ^ ) ⇒ 4 i ^ + 9 j ^ + 19 k ^ = ( x + 3 y + 2 z ) i ^ + ( − 2 x − 7 y + z ) j ^ + ( 3 x + 10 y + 9 z ) k ^
Comparing both sides, we get:
x + 3 y + 2 z = 4 … ( 1 ) − 2 x − 7 y + z = 9 … ( 2 ) 3 x + 10 y + 9 z = 19 … ( 3 ) x+3y+2z=4\ldots(1)\\
-2x-7y+z=9\ldots(2)\\
3x+10y+9z=19\ldots(3)\\ x + 3 y + 2 z = 4 … ( 1 ) − 2 x − 7 y + z = 9 … ( 2 ) 3 x + 10 y + 9 z = 19 … ( 3 )
Now, solving these 3 3 3 equations:
D = ∣ 1 3 2 − 2 − 7 1 3 10 9 ∣ = − 8 D x = ∣ 4 3 2 9 − 7 1 19 10 9 ∣ = − 32 D y = ∣ 1 4 2 − 2 9 1 3 19 9 ∣ = 16 D z = ∣ 1 3 4 − 2 − 7 9 3 10 19 ∣ = − 24 D=\left|\begin{array}{ccc}
1 & 3 & 2 \\
-2 & -7 & 1 \\
3 & 10 & 9
\end{array}\right|=-8\\
D_{x}=\left|\begin{array}{ccc}
4 & 3 & 2 \\
9 & -7 & 1 \\
19 & 10 & 9
\end{array}\right|=-32\\
D_{y}=\left|\begin{array}{ccc}
1 & 4 & 2 \\
-2 & 9 & 1 \\
3 & 19 & 9
\end{array}\right|=16\\
D_{z}=\left|\begin{array}{ccc}
1 & 3 & 4 \\
-2 & -7 & 9 \\
3 & 10 & 19
\end{array}\right|=-24\\ D = ∣ ∣ 1 − 2 3 3 − 7 10 2 1 9 ∣ ∣ = − 8 D x = ∣ ∣ 4 9 19 3 − 7 10 2 1 9 ∣ ∣ = − 32 D y = ∣ ∣ 1 − 2 3 4 9 19 2 1 9 ∣ ∣ = 16 D z = ∣ ∣ 1 − 2 3 3 − 7 10 4 9 19 ∣ ∣ = − 24
Using Cramer's rule, we get:
x = D x D , y = D y D , z = D z D x = D x D = − 32 − 8 = 4 y = D y D = 16 − 8 = − 2 z = D z D = − 24 − 8 = 3 \begin{gathered}
x=\frac{D_{x}}{D}, y=\frac{D_{y}}{D}, z=\frac{D_{z}}{D} \\
x=\frac{D_{x}}{D}=\frac{-32}{-8}=4 \\
y=\frac{D_{y}}{D}=\frac{16}{-8}=-2 \\
z=\frac{D_{z}}{D}=\frac{-24}{-8}=3
\end{gathered} x = D D x , y = D D y , z = D D z x = D D x = − 8 − 32 = 4 y = D D y = − 8 16 = − 2 z = D D z = − 8 − 24 = 3
∴ v ⃗ = 4 u ⃗ 1 − 2 u ⃗ 2 + 3 u ⃗ 3 \therefore \vec v=4\vec u_1-2\vec u_2+3\vec u_3 ∴ v = 4 u 1 − 2 u 2 + 3 u 3
Comments