Given that:
v=4i^+9j^+19k^,u1=i^−2j^+3k^,u2=3i^−7j^+10k^,u3=2i^+j^+9k^
Let v=x(u1)+y(u2)+z(u3)
⇒4i^+9j^+19k^=x(i^−2j^+3k^)+y(3i^−7j^+10k^)+z(2i^+j^+9k^)⇒4i^+9j^+19k^=(x+3y+2z)i^+(−2x−7y+z)j^+(3x+10y+9z)k^
Comparing both sides, we get:
x+3y+2z=4…(1)−2x−7y+z=9…(2)3x+10y+9z=19…(3)
Now, solving these 3 equations:
D=∣∣1−233−710219∣∣=−8Dx=∣∣49193−710219∣∣=−32Dy=∣∣1−234919219∣∣=16Dz=∣∣1−233−7104919∣∣=−24
Using Cramer's rule, we get:
x=DDx,y=DDy,z=DDzx=DDx=−8−32=4y=DDy=−816=−2z=DDz=−8−24=3
∴v=4u1−2u2+3u3
Comments
Leave a comment