Answer to Question #240677 in Linear Algebra for bilal

Question #240677

write vector v=(4,9,19) as a linear combination of vectors u1=(1,-2,3),u2=(3,-7,10),u3=(2,1,9)


1
Expert's answer
2021-09-22T22:55:18-0400


Given that:

v=4i^+9j^+19k^,u1=i^2j^+3k^,u2=3i^7j^+10k^,u3=2i^+j^+9k^\vec v=4\hat i +9\hat j+19\hat k, \vec u_1=\hat i-2\hat j+3\hat k,\\ \vec u_2=3\hat i-7\hat j+10\hat k,\vec u_3=2\hat i+\hat j+9\hat k\\

Let v=x(u1)+y(u2)+z(u3)\vec v=x(\vec u_1)+y(\vec u_2)+z(\vec u_3)\\

4i^+9j^+19k^=x(i^2j^+3k^)+y(3i^7j^+10k^)+z(2i^+j^+9k^)4i^+9j^+19k^=(x+3y+2z)i^+(2x7y+z)j^+(3x+10y+9z)k^\Rightarrow 4\hat i +9\hat j+19\hat k=x(\hat i-2\hat j+3\hat k)+y(3\hat i-7\hat j+10\hat k)+z(2\hat i+\hat j+9\hat k)\\ \Rightarrow4\hat i +9\hat j+19\hat k=(x+3y+2z)\hat i+(-2x-7y+z)\hat j+(3x+10y+9z)\hat k\\

Comparing both sides, we get:

x+3y+2z=4(1)2x7y+z=9(2)3x+10y+9z=19(3)x+3y+2z=4\ldots(1)\\ -2x-7y+z=9\ldots(2)\\ 3x+10y+9z=19\ldots(3)\\

Now, solving these 33 equations:

D=1322713109=8Dx=43297119109=32Dy=1422913199=16Dz=13427931019=24D=\left|\begin{array}{ccc} 1 & 3 & 2 \\ -2 & -7 & 1 \\ 3 & 10 & 9 \end{array}\right|=-8\\ D_{x}=\left|\begin{array}{ccc} 4 & 3 & 2 \\ 9 & -7 & 1 \\ 19 & 10 & 9 \end{array}\right|=-32\\ D_{y}=\left|\begin{array}{ccc} 1 & 4 & 2 \\ -2 & 9 & 1 \\ 3 & 19 & 9 \end{array}\right|=16\\ D_{z}=\left|\begin{array}{ccc} 1 & 3 & 4 \\ -2 & -7 & 9 \\ 3 & 10 & 19 \end{array}\right|=-24\\

Using Cramer's rule, we get:

x=DxD,y=DyD,z=DzDx=DxD=328=4y=DyD=168=2z=DzD=248=3\begin{gathered} x=\frac{D_{x}}{D}, y=\frac{D_{y}}{D}, z=\frac{D_{z}}{D} \\ x=\frac{D_{x}}{D}=\frac{-32}{-8}=4 \\ y=\frac{D_{y}}{D}=\frac{16}{-8}=-2 \\ z=\frac{D_{z}}{D}=\frac{-24}{-8}=3 \end{gathered}

v=4u12u2+3u3\therefore \vec v=4\vec u_1-2\vec u_2+3\vec u_3


Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

No comments. Be the first!

Leave a comment