Question #230374

A parabola y=ax2+bx+cy=ax^{2}+bx+c  passes through the points (-2, 10); (1,4) and (2,6).

Which of the following are correct? More than one answer may be correct


  1. The augmented matrix for the system of equations connecting a, b and c is (421:10111:4421:6)\left(\begin{array}{cccc}4&-2&1&:&10\\1&1&1&:&4\\4&2&1&: &6\end{array}\right)
  2. The determinant of the coefficient matrix for the system of equations connecting a, b and c is -12.
  3. The parabola above passes through the origin.
  4. By applying Gauss elimination, the normal form of the augmented matrix for the system of equations connecting a, b and c is(100:1010:1001:4).\left(\begin{array}{cccc}1&0&0&:&1\\0&1&0&:&-1\\0&0&1&: &4\end{array}\right). ​
1
Expert's answer
2021-08-31T13:20:32-0400

(2,10)(-2, 10)


a(2)2+b(2)+c=10a(-2)^2+b(-2)+c=10


(1,4)(1,4)


a(1)2+b(1)+c=4a(1)^2+b(1)+c=4

(2,6)(2,6)


a(2)2+b(2)+c=6a(2)^2+b(2)+c=6


4a2b+c=10a+b+c=44a+2b+c=6\begin{matrix} 4a-2b+c=10\\ a+b+c=4\\ 4a+2b+c=6\\ \end{matrix}

1. The augmented matrix for the system of equations connecting a, b and c is


A=(421:10111:4421:6)A=\begin{pmatrix} 4 & -2 & 1 & : & 10 \\ 1 & 1 & 1 & : & 4 \\ 4 & 2 & 1 & : & 6 \\ \end{pmatrix}

True.


2.


421111421=41121(2)1141+11142\begin{vmatrix} 4 & -2 & 1 \\ 1 & 1 & 1 \\ 4 & 2 & 1 \\ \end{vmatrix}=4\begin{vmatrix} 1 & 1 \\ 2 & 1 \end{vmatrix}-(-2)\begin{vmatrix} 1 & 1 \\ 4 & 1 \end{vmatrix}+1\begin{vmatrix} 1 & 1 \\ 4 & 2 \end{vmatrix}


=462=12=-4-6-2=-12

True.


3.

(0,0)(0,0)


a(0)2+b(0)+c=0=>c=0a(0)^2+b(0)+c=0=>c=0


4a2b+0=10a+b+0=44a+2b+0=6\begin{matrix} 4a-2b+0=10\\ a+b+0=4\\ 4a+2b+0=6\\ \end{matrix}




8a=16a+b=44a+2b=6\begin{matrix} 8a=16\\ a+b=4\\ 4a+2b=6\\ \end{matrix}




a=2b=24a+2b=6\begin{matrix} a=2\\ b=2\\ 4a+2b=6\\ \end{matrix}


No solution.


False.


4.


A=(421:10111:4421:6)A=\begin{pmatrix} 4 & -2 & 1 & : & 10 \\ 1 & 1 & 1 & : & 4 \\ 4 & 2 & 1 & : & 6 \\ \end{pmatrix}

R1=R1/4R_1=R_1/4


(11/21/4:5/2111:4421:6)\begin{pmatrix} 1 & -1/2 & 1/4 & : & 5/2 \\ 1 & 1 & 1 & : & 4 \\ 4 & 2 & 1 & : & 6 \\ \end{pmatrix}

R2=R2R1R_2=R_2-R_1


(11/21/4:5/203/23/4:3/2421:6)\begin{pmatrix} 1 & -1/2 & 1/4 & : & 5/2 \\ 0 & 3/2 & 3/4 & : & 3/2 \\ 4 & 2 & 1 & : & 6 \\ \end{pmatrix}

R3=R34R1R_3=R_3-4R_1


(11/21/4:5/203/23/4:3/2040:4)\begin{pmatrix} 1 & -1/2 & 1/4 & : & 5/2 \\ 0 & 3/2 & 3/4 & : & 3/2 \\ 0 & 4 & 0 & : & -4 \\ \end{pmatrix}

R2=2R2/3R_2=2R_2/3


(11/21/4:5/2011/2:1040:4)\begin{pmatrix} 1 & -1/2 & 1/4 & : & 5/2 \\ 0 & 1 & 1/2 & : & 1 \\ 0 & 4 & 0 & : & -4 \\ \end{pmatrix}

R1=R1+R2/2R_1=R_1+R_2/2


(101/2:3011/2:1040:4)\begin{pmatrix} 1 & 0 & 1/2 & : & 3 \\ 0 & 1 & 1/2 & : & 1 \\ 0 & 4 & 0 & : & -4 \\ \end{pmatrix}

R3=R34R2R_3=R_3-4R_2


(101/2:3011/2:1002:8)\begin{pmatrix} 1 & 0 & 1/2 & : & 3 \\ 0 & 1 & 1/2 & : & 1 \\ 0 & 0 & -2 & : & -8 \\ \end{pmatrix}

R3=R3/2R_3=-R_3/2


(101/2:3011/2:1001:4)\begin{pmatrix} 1 & 0 & 1/2 & : & 3 \\ 0 & 1 & 1/2 & : & 1 \\ 0 & 0 & 1 & : & 4 \\ \end{pmatrix}

R1=R1R3/2R_1=R_1-R_3/2


(100:1011/2:1001:4)\begin{pmatrix} 1 & 0 & 0 & : & 1 \\ 0 & 1 & 1/2 & : & 1 \\ 0 & 0 & 1 & : & 4 \\ \end{pmatrix}

R2=R2R3/2R_2=R_2-R_3/2


(100:1010:1001:4)\begin{pmatrix} 1 & 0 & 0 & : & 1 \\ 0 & 1 & 0 & : & -1 \\ 0 & 0 & 1 & : & 4 \\ \end{pmatrix}

The normal form of the augmented matrix for the system of equations connecting a, b and c is


(100:1010:1001:4)\begin{pmatrix} 1 & 0 & 0 & : & 1 \\ 0 & 1 & 0 & : & -1 \\ 0 & 0 & 1 & : & 4 \\ \end{pmatrix}

True.



Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

No comments. Be the first!
LATEST TUTORIALS
APPROVED BY CLIENTS