Question #228527
Find the dual basis of {(1,0,1),(1,1,0),(0,1,1)} in R^3
1
Expert's answer
2021-08-24T19:18:58-0400

We need to find vectors:

e1=(x1,y1,z1)e2=(x2,y2,z2)e3=(x3,y3,z3)e_1'=(x_1,y_1,z_1) \newline e_2'=(x_2,y_2,z_2) \newline e_3'=(x_3,y_3,z_3) \newline

The condition equals three systems of three equations. Each system will give us one vector for the dual base.

First vector:

x1+z1=1x1+y1=0y1+z1=0x_1+z_1=1 \newline x_1+y_1=0\newline y_1+z_1=0 \newline

Solving these equations we get:


x1=12;y1=12;z1=12e1=(12,12,12)x_1=\frac{1}{2}; y_1=\frac{-1}{2};z_1=\frac{1}{2} \newline e'_1=(\frac{1}{2},\frac{-1}{2},\frac{1}{2})

Second vector:


x2+z2=0x2+y2=1y2+z2=0x_2+z_2=0 \newline x_2+y_2=1\newline y_2+z_2=0 \newline

Solving these equations we get:


x2=12;y2=12;z2=12e2=(12,12,12)x_2=\frac{1}{2}; y_2=\frac{1}{2};z_2=\frac{-1}{2} \newline e'_2=(\frac{1}{2},\frac{1}{2},\frac{-1}{2})

Third vector:


x3+z3=0x3+y3=0y3+z3=1x_3+z_3=0 \newline x_3+y_3=0\newline y_3+z_3=1 \newline

Solving these equations we get:


x3=12;y3=12;z3=12e3=(12,12,12)x_3=\frac{-1}{2}; y_3=\frac{1}{2};z_3=\frac{1}{2} \newline e'_3=(\frac{-1}{2},\frac{1}{2},\frac{1}{2})

Hence, dual basis are:


e1=(12,12,12)e2=(12,12,12)e3=(12,12,12)e'_1=(\frac{1}{2},\frac{-1}{2},\frac{1}{2}) \newline e'_2=(\frac{1}{2},\frac{1}{2},\frac{-1}{2}) \newline e'_3=(\frac{-1}{2},\frac{1}{2},\frac{1}{2})


Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

No comments. Be the first!
LATEST TUTORIALS
APPROVED BY CLIENTS