Answer:-
8x2+7y2+3z2−8yz+4xz+12xy
matrix in quadratic form:
A=⎝⎛86267−42−43⎠⎞
∣∣8−λ6267−λ−42−43−λ∣∣=0
(8−λ)((7−λ)(3−λ)−16)−6(18−6λ+8)+2(−24−14+2λ)=0
(8−λ)(21−10λ+λ2−16)+36λ−156+4λ−76=0
40−80λ+8λ2−5λ+10λ2−λ3+40λ−232=0
λ3−18λ2+45λ+182=0
λ1=−2.1,λ2=6.3,λ3=13.8
eigenvectors:
for λ1=−2.1 :
10.1x+6y+2z=0
6x+9.1y−4z=0
2x−4y+5.1z=0
26.2x+21.1y=0
21.1y−19.3z=0
y=−1.2x,z=1.1y
x1=⎝⎛1−1.2−1.4⎠⎞
for λ2=6.3 :
1.7x+6y+2z=0
6x+0.7y−4z=0
2x−4y−3.3z=0
2.6x−11.3y=0
12.7y+5.9z=0
y=0.2x,z=−2.2y
x2=⎝⎛10.2−0.4⎠⎞
for λ3=13.8 :
−5.8x+6y+2z=0
6x−6.8y−4z=0
2x−4y−10.8z=0
17.6x−18.8y=0
5.2y+28.4z=0
y=0.9x,z=−0.2y
x3=⎝⎛10.9−0.2⎠⎞
normalized matrix:
N=⎝⎛1/∣x1∣−1.2/∣x1∣−1.4/∣x1∣1/∣x2∣0.2/∣x2∣−0.4/∣x2∣1/∣x3∣0.9/∣x3∣−0.2/∣x3∣⎠⎞
∣x1∣=2.1,∣x2∣=1.1,∣x3∣=1.4
N=⎝⎛0.5−0.6−0.70.90.2−0.40.70.6−0.1⎠⎞
NT=⎝⎛0.50.90.7−0.60.20.6−0.7−0.4−0.1⎠⎞
AN=⎝⎛86267−42−43⎠⎞⎝⎛0.5−0.6−0.70.90.2−0.40.70.6−0.1⎠⎞=⎝⎛−11.6−2.47.67−0.298.8−1.3⎠⎞
D=NTAN=⎝⎛0.50.90.7−0.60.20.6−0.7−0.4−0.1⎠⎞⎝⎛−11.6−2.47.67−0.298.8−1.3⎠⎞=
=⎝⎛−8.40008.300011.7⎠⎞
Canonical form: 0.2x2+8.3y2+11.7z2
quadratic form Q(x) = xT · A · x is positive semidefinite if Q(x) ≥ 0
Comments
Leave a comment