Answer to Question #229508 in Linear Algebra for Bhass

Question #229508
Reduce the quadratic form

2 2 2 8 7 3 12 – 8 4 x y z xy yz zx    



to the canonical form

through an orthogonal transformation and hence show that it

is positive Semi-definite.
1
Expert's answer
2021-11-02T18:46:29-0400

Answer:-

8x2+7y2+3z28yz+4xz+12xy8x^2+7y^2+3z^2-8yz+4xz+12xy

matrix in quadratic form:

A=(862674243)A=\begin{pmatrix} 8 & 6&2 \\ 6 & 7&-4 \\ 2&-4&3 \end{pmatrix}


8λ6267λ4243λ=0\begin{vmatrix} 8 -\lambda& 6&2 \\ 6 & 7-\lambda&-4 \\ 2&-4&3-\lambda \end{vmatrix}=0


(8λ)((7λ)(3λ)16)6(186λ+8)+2(2414+2λ)=0(8-\lambda)((7-\lambda)(3-\lambda)-16)-6(18-6\lambda+8)+2(-24-14+2\lambda)=0

(8λ)(2110λ+λ216)+36λ156+4λ76=0(8-\lambda)(21-10\lambda+\lambda^2-16)+36\lambda-156+4\lambda-76=0

4080λ+8λ25λ+10λ2λ3+40λ232=040-80\lambda+8\lambda^2-5\lambda+10\lambda^2-\lambda^3+40\lambda-232=0

λ318λ2+45λ+182=0\lambda^3-18\lambda^2+45\lambda+182=0

λ1=2.1,λ2=6.3,λ3=13.8\lambda_1=-2.1,\lambda_2=6.3,\lambda_3=13.8


eigenvectors:


for λ1=2.1\lambda_1=-2.1 :

10.1x+6y+2z=010.1x+6y+2z=0

6x+9.1y4z=06x+9.1y-4z=0

2x4y+5.1z=02x-4y+5.1z=0


26.2x+21.1y=026.2x+21.1y=0

21.1y19.3z=021.1y-19.3z=0

y=1.2x,z=1.1yy=-1.2x,z=1.1y


x1=(11.21.4)x_1=\begin{pmatrix} 1 \\ -1.2 \\ -1.4 \end{pmatrix}


for λ2=6.3\lambda_2=6.3 :

1.7x+6y+2z=01.7x+6y+2z=0

6x+0.7y4z=06x+0.7y-4z=0

2x4y3.3z=02x-4y-3.3z=0


2.6x11.3y=02.6x-11.3y=0

12.7y+5.9z=012.7y+5.9z=0

y=0.2x,z=2.2yy=0.2x,z=-2.2y


x2=(10.20.4)x_2=\begin{pmatrix} 1 \\ 0.2 \\ -0.4 \end{pmatrix}


for λ3=13.8\lambda_3=13.8 :

5.8x+6y+2z=0-5.8x+6y+2z=0

6x6.8y4z=06x-6.8y-4z=0

2x4y10.8z=02x-4y-10.8z=0


17.6x18.8y=017.6x-18.8y=0

5.2y+28.4z=05.2y+28.4z=0

y=0.9x,z=0.2yy=0.9x,z=-0.2y


x3=(10.90.2)x_3=\begin{pmatrix} 1 \\ 0.9 \\ -0.2 \end{pmatrix}


​normalized matrix:

N=(1/x11/x21/x31.2/x10.2/x20.9/x31.4/x10.4/x20.2/x3)N=\begin{pmatrix} 1/|x_1| & 1/|x_2| &1/|x_3|\\ -1.2/|x_1| & 0.2/|x_2|&0.9/|x_3|\\ -1.4/|x_1|&-0.4/|x_2|&-0.2/|x_3| \end{pmatrix}


x1=2.1,x2=1.1,x3=1.4|x_1|=2.1,|x_2|=1.1,|x_3|=1.4


N=(0.50.90.70.60.20.60.70.40.1)N=\begin{pmatrix} 0.5 & 0.9 &0.7\\ -0.6 & 0.2&0.6\\ -0.7&-0.4&-0.1 \end{pmatrix}


NT=(0.50.60.70.90.20.40.70.60.1)N^T=\begin{pmatrix} 0.5 & -0.6 &-0.7\\ 0.9 & 0.2&-0.4\\ 0.7&0.6&-0.1 \end{pmatrix}


AN=(862674243)(0.50.90.70.60.20.60.70.40.1)=(17.691.678.82.40.21.3)AN=\begin{pmatrix} 8 & 6&2 \\ 6 & 7&-4 \\ 2&-4&3 \end{pmatrix}\begin{pmatrix} 0.5 & 0.9 &0.7\\ -0.6 & 0.2&0.6\\ -0.7&-0.4&-0.1 \end{pmatrix}=\begin{pmatrix} -1 & 7.6&9 \\ 1.6 & 7&8.8 \\ -2.4&-0.2&-1.3 \end{pmatrix}


D=NTAN=(0.50.60.70.90.20.40.70.60.1)(17.691.678.82.40.21.3)=D=N^TAN=\begin{pmatrix} 0.5 & -0.6 &-0.7\\ 0.9 & 0.2&-0.4\\ 0.7&0.6&-0.1 \end{pmatrix}\begin{pmatrix} -1 & 7.6&9 \\ 1.6 & 7&8.8 \\ -2.4&-0.2&-1.3 \end{pmatrix}=


=(8.40008.300011.7)=\begin{pmatrix} -8.4 &0 &0\\ 0 & 8.3&0\\ 0&0&11.7 \end{pmatrix}


Canonical form: 0.2x2+8.3y2+11.7z20.2x^2+8.3y^2+11.7z^2


quadratic form Q(x) = xT · A · x is positive semidefinite if Q(x) ≥ 0


Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

No comments. Be the first!

Leave a comment