A=[3135]
det(A−λI)=∣∣3−λ135−λ∣∣=0
(3−λ)(5−λ)−3(1)=0
15−8λ+λ2−3=0
λ2−8λ+12=0
(λ−2)(λ−6)=0 The eigenvalues are λ1=2,λ2=6.
λ=2
A−λI=[3−λ135−λ]=[1133] R2=R2−R1
[1030] Solve
[1030][x1x2]=[00] If we take x2=t, then x1=−3t.
The eigenvector is x=[−31]
λ=6
A−λI=[3−λ135−λ]=[−313−1]R1=−R1/3
[11−1−1]
R2=R2−R1
[10−10] Solve
[10−10][y1y2]=[00] If we take y2=t, then y1=t.
The eigenvector is y=[11]
Eigenvalue: 2, eigenvector: [−31].
Eigenvalue: 6, eigenvector: [11].
Comments