Question #227528

Find the eigen value and eigen vector of A = [ 3 3 1 5 ] 


1
Expert's answer
2021-08-19T17:25:27-0400
A=[3315]A=\begin{bmatrix} 3 & 3 \\ 1 & 5 \end{bmatrix}

det(AλI)=3λ315λ=0\det(A-\lambda I)=\begin{vmatrix} 3-\lambda & 3 \\ 1 & 5-\lambda \end{vmatrix}=0

(3λ)(5λ)3(1)=0( 3-\lambda)( 5-\lambda)-3(1)=0

158λ+λ23=015-8\lambda+\lambda^2-3=0

λ28λ+12=0\lambda^2-8\lambda+12=0

(λ2)(λ6)=0(\lambda-2)(\lambda-6)=0

The eigenvalues are λ1=2,λ2=6.\lambda_1=2, \lambda_2=6.


λ=2\lambda=2


AλI=[3λ315λ]=[1313]A-\lambda I=\begin{bmatrix} 3-\lambda & 3 \\ 1 & 5-\lambda \end{bmatrix}=\begin{bmatrix} 1 & 3 \\ 1 & 3 \end{bmatrix}

R2=R2R1R_2=R_2-R_1


[1300]\begin{bmatrix} 1 & 3 \\ 0 & 0 \end{bmatrix}

Solve


[1300][x1x2]=[00]\begin{bmatrix} 1 & 3 \\ 0 & 0 \end{bmatrix}\begin{bmatrix} x_1 \\ x_2 \end{bmatrix}=\begin{bmatrix} 0 \\ 0 \end{bmatrix}

If we take x2=t,x_2=t, then x1=3t.x_1=-3t.

The eigenvector is x=[31]\vec x=\begin{bmatrix} -3 \\ 1 \end{bmatrix}



λ=6\lambda=6


AλI=[3λ315λ]=[3311]A-\lambda I=\begin{bmatrix} 3-\lambda & 3 \\ 1 & 5-\lambda \end{bmatrix}=\begin{bmatrix} -3 & 3 \\ 1 & -1 \end{bmatrix}

R1=R1/3R_1=-R_1/3


[1111]\begin{bmatrix} 1 & -1 \\ 1 & -1 \end{bmatrix}


R2=R2R1R_2=R_2-R_1


[1100]\begin{bmatrix} 1 & -1 \\ 0 & 0 \end{bmatrix}

Solve


[1100][y1y2]=[00]\begin{bmatrix} 1 & -1 \\ 0 & 0 \end{bmatrix}\begin{bmatrix} y_1 \\ y_2 \end{bmatrix}=\begin{bmatrix} 0 \\ 0 \end{bmatrix}

If we take y2=t,y_2=t, then y1=t.y_1=t.

The eigenvector is y=[11]\vec y=\begin{bmatrix} 1 \\ 1 \end{bmatrix}


Eigenvalue: 2,2, eigenvector: [31].\begin{bmatrix} -3 \\ 1 \end{bmatrix}.

Eigenvalue: 6,6, eigenvector: [11].\begin{bmatrix} 1 \\ 1 \end{bmatrix}.



Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

No comments. Be the first!
LATEST TUTORIALS
APPROVED BY CLIENTS