A = [ 3 3 1 5 ] A=\begin{bmatrix}
3 & 3 \\
1 & 5
\end{bmatrix} A = [ 3 1 3 5 ]
det ( A − λ I ) = ∣ 3 − λ 3 1 5 − λ ∣ = 0 \det(A-\lambda I)=\begin{vmatrix}
3-\lambda & 3 \\
1 & 5-\lambda
\end{vmatrix}=0 det ( A − λ I ) = ∣ ∣ 3 − λ 1 3 5 − λ ∣ ∣ = 0
( 3 − λ ) ( 5 − λ ) − 3 ( 1 ) = 0 ( 3-\lambda)( 5-\lambda)-3(1)=0 ( 3 − λ ) ( 5 − λ ) − 3 ( 1 ) = 0
15 − 8 λ + λ 2 − 3 = 0 15-8\lambda+\lambda^2-3=0 15 − 8 λ + λ 2 − 3 = 0
λ 2 − 8 λ + 12 = 0 \lambda^2-8\lambda+12=0 λ 2 − 8 λ + 12 = 0
( λ − 2 ) ( λ − 6 ) = 0 (\lambda-2)(\lambda-6)=0 ( λ − 2 ) ( λ − 6 ) = 0 The eigenvalues are λ 1 = 2 , λ 2 = 6. \lambda_1=2, \lambda_2=6. λ 1 = 2 , λ 2 = 6.
λ = 2 \lambda=2 λ = 2
A − λ I = [ 3 − λ 3 1 5 − λ ] = [ 1 3 1 3 ] A-\lambda I=\begin{bmatrix}
3-\lambda & 3 \\
1 & 5-\lambda
\end{bmatrix}=\begin{bmatrix}
1 & 3 \\
1 & 3
\end{bmatrix} A − λ I = [ 3 − λ 1 3 5 − λ ] = [ 1 1 3 3 ] R 2 = R 2 − R 1 R_2=R_2-R_1 R 2 = R 2 − R 1
[ 1 3 0 0 ] \begin{bmatrix}
1 & 3 \\
0 & 0
\end{bmatrix} [ 1 0 3 0 ] Solve
[ 1 3 0 0 ] [ x 1 x 2 ] = [ 0 0 ] \begin{bmatrix}
1 & 3 \\
0 & 0
\end{bmatrix}\begin{bmatrix}
x_1 \\
x_2
\end{bmatrix}=\begin{bmatrix}
0 \\
0
\end{bmatrix} [ 1 0 3 0 ] [ x 1 x 2 ] = [ 0 0 ] If we take x 2 = t , x_2=t, x 2 = t , then x 1 = − 3 t . x_1=-3t. x 1 = − 3 t .
The eigenvector is x ⃗ = [ − 3 1 ] \vec x=\begin{bmatrix}
-3 \\
1
\end{bmatrix} x = [ − 3 1 ]
λ = 6 \lambda=6 λ = 6
A − λ I = [ 3 − λ 3 1 5 − λ ] = [ − 3 3 1 − 1 ] A-\lambda I=\begin{bmatrix}
3-\lambda & 3 \\
1 & 5-\lambda
\end{bmatrix}=\begin{bmatrix}
-3 & 3 \\
1 & -1
\end{bmatrix} A − λ I = [ 3 − λ 1 3 5 − λ ] = [ − 3 1 3 − 1 ] R 1 = − R 1 / 3 R_1=-R_1/3 R 1 = − R 1 /3
[ 1 − 1 1 − 1 ] \begin{bmatrix}
1 & -1 \\
1 & -1
\end{bmatrix} [ 1 1 − 1 − 1 ]
R 2 = R 2 − R 1 R_2=R_2-R_1 R 2 = R 2 − R 1
[ 1 − 1 0 0 ] \begin{bmatrix}
1 & -1 \\
0 & 0
\end{bmatrix} [ 1 0 − 1 0 ] Solve
[ 1 − 1 0 0 ] [ y 1 y 2 ] = [ 0 0 ] \begin{bmatrix}
1 & -1 \\
0 & 0
\end{bmatrix}\begin{bmatrix}
y_1 \\
y_2
\end{bmatrix}=\begin{bmatrix}
0 \\
0
\end{bmatrix} [ 1 0 − 1 0 ] [ y 1 y 2 ] = [ 0 0 ] If we take y 2 = t , y_2=t, y 2 = t , then y 1 = t . y_1=t. y 1 = t .
The eigenvector is y ⃗ = [ 1 1 ] \vec y=\begin{bmatrix}
1 \\
1
\end{bmatrix} y = [ 1 1 ]
Eigenvalue: 2 , 2, 2 , eigenvector: [ − 3 1 ] . \begin{bmatrix}
-3 \\
1
\end{bmatrix}. [ − 3 1 ] .
Eigenvalue: 6 , 6, 6 , eigenvector: [ 1 1 ] . \begin{bmatrix}
1 \\
1
\end{bmatrix}. [ 1 1 ] .
Comments