A=⎝⎛131211201⎠⎞
PA(λ)=det(A−λI)=∣∣1−λ3121−λ1201−λ∣∣
=(1−λ)∣∣1−λ10λ−1∣∣−2∣∣3101−λ∣∣
+2∣∣311−λ1∣∣=(1−λ)3−6(1−λ)+6−2(1−λ)
=1−3λ+3λ2−λ3−8+8λ+6
=−λ3+3λ2+5λ−1
A2=⎝⎛131211201⎠⎞⎝⎛131211201⎠⎞
=⎝⎛1+6+23+3+01+3+12+2+26+1+02+1+12+0+26+0+02+0+1⎠⎞
=⎝⎛965674463⎠⎞
A3=⎝⎛965674463⎠⎞⎝⎛131211201⎠⎞
=⎝⎛9+18+46+21+65+12+318+6+412+7+610+4+318+0+412+0+610+0+3⎠⎞
=⎝⎛313320282517221813⎠⎞
−A3+3A2+5A−I=−⎝⎛313320282517221813⎠⎞
+3⎝⎛965674463⎠⎞+5⎝⎛131211201⎠⎞−⎝⎛100010001⎠⎞
=⎝⎛−31+27+5−1−33+18+15−0−20+15+5−0−28+18+10−0−25+21+5−1−17+12+5−0−22+12+10−0−18+18+0−0−13+9+5−1⎠⎞
=⎝⎛000000000⎠⎞
The matrix A satisfies its own characteristic equation.
Therefore we verify Cayley-Hamilton theorem of A=⎝⎛131211201⎠⎞.
Comments