Question #227529

Verify Cayley-Hamilton theorem of A= ( 1 2 2 3 1 0 1 1 1 ) 


1
Expert's answer
2021-08-20T04:25:53-0400
A=(122310111)A=\begin{pmatrix} 1 & 2 & 2 \\ 3 & 1 & 0 \\ 1 & 1 & 1 \\ \end{pmatrix}

PA(λ)=det(AλI)=1λ2231λ0111λP_A(\lambda)=\det(A-\lambda I)=\begin{vmatrix} 1-\lambda & 2 & 2 \\ 3 & 1-\lambda & 0 \\ 1 & 1 & 1-\lambda \\ \end{vmatrix}

=(1λ)1λ01λ123011λ=(1-\lambda)\begin{vmatrix} 1-\lambda & 0 \\ 1 & \lambda-1 \end{vmatrix}-2\begin{vmatrix} 3 & 0 \\ 1 & 1-\lambda \end{vmatrix}

+231λ11=(1λ)36(1λ)+62(1λ)+2\begin{vmatrix} 3 & 1-\lambda \\ 1 & 1 \end{vmatrix}=(1-\lambda)^3-6(1-\lambda)+6-2(1-\lambda)

=13λ+3λ2λ38+8λ+6=1-3\lambda+3\lambda^2-\lambda^3-8+8\lambda+6

=λ3+3λ2+5λ1=-\lambda^3+3\lambda^2+5\lambda-1

A2=(122310111)(122310111)A^2=\begin{pmatrix} 1 & 2 & 2 \\ 3 & 1 & 0 \\ 1 & 1 & 1 \\ \end{pmatrix}\begin{pmatrix} 1 & 2 & 2 \\ 3 & 1 & 0 \\ 1 & 1 & 1 \\ \end{pmatrix}

=(1+6+22+2+22+0+23+3+06+1+06+0+01+3+12+1+12+0+1)=\begin{pmatrix} 1+6+2 & 2+2+2 & 2+0+2 \\ 3+3+0 & 6+1+0 & 6+0+0 \\ 1+3+1 & 2+1+1 & 2+0+1 \\ \end{pmatrix}

=(964676543)=\begin{pmatrix} 9 & 6 & 4 \\ 6 & 7 & 6 \\ 5 & 4 & 3 \\ \end{pmatrix}

A3=(964676543)(122310111)A^3=\begin{pmatrix} 9 & 6 & 4 \\ 6 & 7 & 6 \\ 5 & 4 & 3 \\ \end{pmatrix}\begin{pmatrix} 1 & 2 & 2 \\ 3 & 1 & 0 \\ 1 & 1 & 1 \\ \end{pmatrix}

=(9+18+418+6+418+0+46+21+612+7+612+0+65+12+310+4+310+0+3)=\begin{pmatrix} 9+18+4 & 18+6+4 & 18+0+4 \\ 6+21+6 & 12+7+6 & 12+0+6 \\ 5+12+3 & 10+4+3 & 10+0+3 \\ \end{pmatrix}

=(312822332518201713)=\begin{pmatrix} 31 & 28 & 22 \\ 33 & 25 & 18 \\ 20 & 17 & 13 \\ \end{pmatrix}

A3+3A2+5AI=(312822332518201713)-A^3+3A^2+5A-I=-\begin{pmatrix} 31 & 28 & 22 \\ 33 & 25 & 18 \\ 20 & 17 & 13 \\ \end{pmatrix}

+3(964676543)+5(122310111)(100010001)+3\begin{pmatrix} 9 & 6 & 4 \\ 6 & 7 & 6 \\ 5 & 4 & 3 \\ \end{pmatrix}+5\begin{pmatrix} 1 & 2 & 2 \\ 3 & 1 & 0 \\ 1 & 1 & 1 \\ \end{pmatrix}-\begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \\ \end{pmatrix}

=(31+27+5128+18+10022+12+10033+18+15025+21+5118+18+0020+15+5017+12+5013+9+51)=\begin{pmatrix} -31+27+5-1 & -28+18+10-0 & -22+12+10-0 \\ -33+18+15-0 & -25+21+5-1 & -18+18+0-0 \\ -20+15+5-0 & -17+12+5-0 & -13+9+5-1 \\ \end{pmatrix}

=(000000000)=\begin{pmatrix} 0 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \\ \end{pmatrix}

The matrix AA satisfies its own characteristic equation. 

Therefore we verify  Cayley-Hamilton theorem of A=(122310111).A=\begin{pmatrix} 1 & 2 & 2 \\ 3 & 1 & 0 \\ 1 & 1 & 1 \\ \end{pmatrix}.



Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

No comments. Be the first!
LATEST TUTORIALS
APPROVED BY CLIENTS