Question #226835
Find the orthogonal and Normal canonical reduction of the quadratic form 7x^2 +6xy+7y^2. Hence identify the conic represented by 7x^2+6xy+7y^2=200.. also find the principal axes of the given quadratic form.
1
Expert's answer
2021-08-17T18:02:12-0400

Orthogonal reduction

F(x,y)=(x,y) [7337]\begin{bmatrix} 7 & 3 \\ 3 & 7 \end{bmatrix} (xy)\begin{pmatrix} x \\ y \end{pmatrix} ;

7k337k\begin{vmatrix} 7-k & 3 \\ 3 & 7-k \end{vmatrix} =k2-14\cdot k+40=0;

k1=4, k2=10;

1)k=4

(3 3)(xy)\cdot\begin{pmatrix} x \\ y \end{pmatrix} =(00)\begin{pmatrix} 0 \\ 0 \end{pmatrix}

x+y=0;x=-1,y=1;|(-1 1)}=2\sqrt{2} ;

v1=12(11)\frac {1} {\sqrt{2}}\cdot\begin{pmatrix} -1 \\ 1 \end{pmatrix} ;

2) k=10

(-3 3)(xy)\cdot\begin{pmatrix} x \\ y \end{pmatrix} =(00)\begin{pmatrix} 0 \\ 0 \end{pmatrix}

-x+y=0;

x=1,y=1;

v1=12(11)\frac {1} {\sqrt{2}}\cdot\begin{pmatrix} 1 \\ 1 \end{pmatrix} ;

{v1,v2}-new ortogonal basis;

P=12(1111)\frac {1} {\sqrt{2}}\cdot\begin{pmatrix} 1 &-1 \\ 1 & 1 \end{pmatrix}

We make substitution

(x^y^)\begin{pmatrix} \hat{x }\\ \hat{ y } \end{pmatrix} =P-1(xy)\cdot\begin{pmatrix} x \\ y \end{pmatrix} =12(1111)\frac {1} {\sqrt{2}}\cdot\begin{pmatrix} 1 &1 \\ -1 & 1 \end{pmatrix} (xy)\cdot\begin{pmatrix} x \\ y \end{pmatrix} =12(x+yx+y)=\frac {1} {\sqrt{2}}\cdot\begin{pmatrix} x+y \\ -x+y \end{pmatrix} ;

q(x,y)=(x^,y^\hat{x} , \hat{y} )\cdot PT(7337)PP^{T}\cdot\begin{pmatrix} 7 &3\\ 3 &7 \end{pmatrix}\cdot P\cdot(x^y^)\begin{pmatrix} \hat{x }\\ \hat{ y } \end{pmatrix}=(x^,y^\hat{x} , \hat{y} )\cdot(10004)\begin{pmatrix} 10 & 0 \\ 0& 4 \end{pmatrix} \cdot (x^y^)\begin{pmatrix} \hat{x }\\ \hat{ y } \end{pmatrix}=

=10 x^2+4y^2=200\cdot\hat{x}^{2}+4\cdot\hat{y}^2=200 ;

x^2202+y^2502=1{\hat{x}^{2}\over \sqrt{20}^{2}}+{\hat{y}^{2}\over \sqrt{50}^{2}}=1 it is ellipse.


Principal axes are :

L1||e1=12(11)\frac {1} {\sqrt{2}}\cdot\begin{pmatrix} 1 \\ 1 \end{pmatrix} ;

L2||e2=12(11)\frac {1} {\sqrt{2}}\cdot\begin{pmatrix} -1 \\ 1 \end{pmatrix} ;

Canonical reducrion:

7x^2+6xy+7y^2=7(x2+67xy+y2)=\cdot(x^{2}+\frac {6}{7}\cdot x\cdot y+y^{2})=

=7(x+37y)2+407y2=200\cdot(x+\frac{3}{7}\cdot y)^{2}+\frac{40}{7}\cdot y^{2}=200 ;

x^=x+37y,y^=y;\hat{x}=x+\frac{3}{7}\cdot y, \hat{y}=y;

7x^2+407y^2=200;7\cdot \hat{x}^2+\frac{40}{7}\cdot \hat{y}^{2}=200;

x^220072+y^2352=1{\hat{x}^2\over\sqrt{\frac {200}{7}}^2}+{\hat{y}^2\over\sqrt{35}^2}=1 - ellipse


Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

No comments. Be the first!
LATEST TUTORIALS
APPROVED BY CLIENTS