Orthogonal reduction
F(x,y)=(x,y) [ 7 3 3 7 ] \begin{bmatrix}
7 & 3 \\
3 & 7
\end{bmatrix} [ 7 3 3 7 ] ( x y ) \begin{pmatrix}
x \\
y
\end{pmatrix} ( x y ) ;
∣ 7 − k 3 3 7 − k ∣ \begin{vmatrix}
7-k & 3 \\
3 & 7-k
\end{vmatrix} ∣ ∣ 7 − k 3 3 7 − k ∣ ∣ =k2 -14⋅ \cdot ⋅ k+40=0;
k1 =4, k2 =10;
1)k=4
(3 3)⋅ ( x y ) \cdot\begin{pmatrix}
x \\
y
\end{pmatrix} ⋅ ( x y ) =( 0 0 ) \begin{pmatrix}
0 \\
0
\end{pmatrix} ( 0 0 )
x+y=0;x=-1,y=1;|(-1 1)}=2 \sqrt{2} 2 ;
v1 =1 2 ⋅ ( − 1 1 ) \frac {1} {\sqrt{2}}\cdot\begin{pmatrix}
-1 \\
1
\end{pmatrix} 2 1 ⋅ ( − 1 1 ) ;
2) k=10
(-3 3)⋅ ( x y ) \cdot\begin{pmatrix}
x \\
y
\end{pmatrix} ⋅ ( x y ) =( 0 0 ) \begin{pmatrix}
0 \\
0
\end{pmatrix} ( 0 0 )
-x+y=0;
x=1,y=1;
v1 =1 2 ⋅ ( 1 1 ) \frac {1} {\sqrt{2}}\cdot\begin{pmatrix}
1 \\
1
\end{pmatrix} 2 1 ⋅ ( 1 1 ) ;
{v1 ,v2 }-new ortogonal basis;
P=1 2 ⋅ ( 1 − 1 1 1 ) \frac {1} {\sqrt{2}}\cdot\begin{pmatrix}
1 &-1 \\
1 & 1
\end{pmatrix} 2 1 ⋅ ( 1 1 − 1 1 )
We make substitution
( x ^ y ^ ) \begin{pmatrix}
\hat{x }\\
\hat{ y }
\end{pmatrix} ( x ^ y ^ ) =P-1 ⋅ ( x y ) \cdot\begin{pmatrix}
x \\
y
\end{pmatrix} ⋅ ( x y ) =1 2 ⋅ ( 1 1 − 1 1 ) \frac {1} {\sqrt{2}}\cdot\begin{pmatrix}
1 &1 \\
-1 & 1
\end{pmatrix} 2 1 ⋅ ( 1 − 1 1 1 ) ⋅ ( x y ) \cdot\begin{pmatrix}
x \\
y
\end{pmatrix} ⋅ ( x y ) = 1 2 ⋅ ( x + y − x + y ) =\frac {1} {\sqrt{2}}\cdot\begin{pmatrix}
x+y \\
-x+y
\end{pmatrix} = 2 1 ⋅ ( x + y − x + y ) ;
q(x,y)=(x ^ , y ^ \hat{x} , \hat{y} x ^ , y ^ )⋅ \cdot ⋅ P T ⋅ ( 7 3 3 7 ) ⋅ P ⋅ P^{T}\cdot\begin{pmatrix}
7 &3\\
3 &7
\end{pmatrix}\cdot P\cdot P T ⋅ ( 7 3 3 7 ) ⋅ P ⋅ ( x ^ y ^ ) \begin{pmatrix}
\hat{x }\\
\hat{ y }
\end{pmatrix} ( x ^ y ^ ) =(x ^ , y ^ \hat{x} , \hat{y} x ^ , y ^ )⋅ \cdot ⋅ ( 10 0 0 4 ) \begin{pmatrix}
10 & 0 \\
0& 4
\end{pmatrix} ( 10 0 0 4 ) ⋅ \cdot ⋅ ( x ^ y ^ ) \begin{pmatrix}
\hat{x }\\
\hat{ y }
\end{pmatrix} ( x ^ y ^ ) =
=10 ⋅ x ^ 2 + 4 ⋅ y ^ 2 = 200 \cdot\hat{x}^{2}+4\cdot\hat{y}^2=200 ⋅ x ^ 2 + 4 ⋅ y ^ 2 = 200 ;
x ^ 2 20 2 + y ^ 2 50 2 = 1 {\hat{x}^{2}\over \sqrt{20}^{2}}+{\hat{y}^{2}\over \sqrt{50}^{2}}=1 20 2 x ^ 2 + 50 2 y ^ 2 = 1 it is ellipse.
Principal axes are :
L1 ||e1 =1 2 ⋅ ( 1 1 ) \frac {1} {\sqrt{2}}\cdot\begin{pmatrix}
1 \\
1
\end{pmatrix} 2 1 ⋅ ( 1 1 ) ;
L2 ||e2 =1 2 ⋅ ( − 1 1 ) \frac {1} {\sqrt{2}}\cdot\begin{pmatrix}
-1 \\
1
\end{pmatrix} 2 1 ⋅ ( − 1 1 ) ;
Canonical reducrion:
7x^2+6xy+7y^2=7⋅ ( x 2 + 6 7 ⋅ x ⋅ y + y 2 ) = \cdot(x^{2}+\frac {6}{7}\cdot x\cdot y+y^{2})= ⋅ ( x 2 + 7 6 ⋅ x ⋅ y + y 2 ) =
=7⋅ ( x + 3 7 ⋅ y ) 2 + 40 7 ⋅ y 2 = 200 \cdot(x+\frac{3}{7}\cdot y)^{2}+\frac{40}{7}\cdot y^{2}=200 ⋅ ( x + 7 3 ⋅ y ) 2 + 7 40 ⋅ y 2 = 200 ;
x ^ = x + 3 7 ⋅ y , y ^ = y ; \hat{x}=x+\frac{3}{7}\cdot y, \hat{y}=y; x ^ = x + 7 3 ⋅ y , y ^ = y ;
7 ⋅ x ^ 2 + 40 7 ⋅ y ^ 2 = 200 ; 7\cdot \hat{x}^2+\frac{40}{7}\cdot \hat{y}^{2}=200; 7 ⋅ x ^ 2 + 7 40 ⋅ y ^ 2 = 200 ;
x ^ 2 200 7 2 + y ^ 2 35 2 = 1 {\hat{x}^2\over\sqrt{\frac {200}{7}}^2}+{\hat{y}^2\over\sqrt{35}^2}=1 7 200 2 x ^ 2 + 35 2 y ^ 2 = 1 - ellipse
Comments