Let { (1,1,1,1) , (1,2,1,2) } be a linearly independent sbuset of a vector space V4. Extend it to a basic of V4
1
Expert's answer
2021-08-26T18:22:57-0400
It is enough to find a matrix L=⎝⎛11x1y112x2y211x3y312x4y4⎠⎞ wit nonzero determinant. Set x1=0, x2=0, x3=1, x4=0; y1=0, y2=0, y3=0 , y4=1. The determinant of the matrix is: det(L)=det(A)det(B), where A=(1112) and B=(1001). det(A)=1, det(B)=1. det(L)=1. Thus, the basis is: (1111), (1212), (0010), (0001).
Comments