A system of linear equations has the augmented matrix
(11k:1−112k:−3k11:k+1)\left(\begin{array}{cccc}1&1&k&:&1\\-1&1&2k&:&-3\\k&1&1&: &k+1\end{array}\right)⎝⎛1−1k111k2k1:::1−3k+1⎠⎞
where k
k is a constant. What is the value of k such that the system above has no solution?
Solution:
For no solution, det(11k −112k k11)=0\det \begin{pmatrix}1&1&k\\ \:-1&1&2k\\ \:k&1&1\end{pmatrix}=0det⎝⎛1−1k111k2k1⎠⎞=0
⇒0=1⋅det(12k11)−1⋅det(−12kk1)+kdet(−11k1)\Rightarrow 0=1\cdot \det \begin{pmatrix}1&2k\\ 1&1\end{pmatrix}-1\cdot \det \begin{pmatrix}-1&2k\\ k&1\end{pmatrix}+k\det \begin{pmatrix}-1&1\\ k&1\end{pmatrix}⇒0=1⋅det(112k1)−1⋅det(−1k2k1)+kdet(−1k11)
⇒0=1⋅(1−2k)−1⋅(−1−2k2)+k(−1−k)⇒0=k2−3k+2⇒k2−2k−k+2=0⇒(k−2)(k−1)=0⇒k=2,k=1\Rightarrow 0=1\cdot \left(1-2k\right)-1\cdot \left(-1-2k^2\right)+k\left(-1-k\right) \\\Rightarrow 0=k^2-3k+2 \\\Rightarrow k^2-2k-k+2=0 \\\Rightarrow (k-2)(k-1)=0 \\\Rightarrow k=2,k=1⇒0=1⋅(1−2k)−1⋅(−1−2k2)+k(−1−k)⇒0=k2−3k+2⇒k2−2k−k+2=0⇒(k−2)(k−1)=0⇒k=2,k=1
Thus, option 4 is correct.
Need a fast expert's response?
and get a quick answer at the best price
for any assignment or question with DETAILED EXPLANATIONS!
Comments