Question #230373

A system of linear equations has the augmented matrix


(11k:1112k:3k11:k+1)\left(\begin{array}{cccc}1&1&k&:&1\\-1&1&2k&:&-3\\k&1&1&: &k+1\end{array}\right)

where k

k is a constant. What is the value of k such that the system above has no solution?


  1. k=1k=-1
  2. k=2k=-2
  3. k=0k=0
  4. k=1k=1
1
Expert's answer
2021-08-30T19:07:46-0400

Solution:

For no solution, det(11k112kk11)=0\det \begin{pmatrix}1&1&k\\ \:-1&1&2k\\ \:k&1&1\end{pmatrix}=0

0=1det(12k11)1det(12kk1)+kdet(11k1)\Rightarrow 0=1\cdot \det \begin{pmatrix}1&2k\\ 1&1\end{pmatrix}-1\cdot \det \begin{pmatrix}-1&2k\\ k&1\end{pmatrix}+k\det \begin{pmatrix}-1&1\\ k&1\end{pmatrix}

0=1(12k)1(12k2)+k(1k)0=k23k+2k22kk+2=0(k2)(k1)=0k=2,k=1\Rightarrow 0=1\cdot \left(1-2k\right)-1\cdot \left(-1-2k^2\right)+k\left(-1-k\right) \\\Rightarrow 0=k^2-3k+2 \\\Rightarrow k^2-2k-k+2=0 \\\Rightarrow (k-2)(k-1)=0 \\\Rightarrow k=2,k=1

Thus, option 4 is correct.


Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

No comments. Be the first!
LATEST TUTORIALS
APPROVED BY CLIENTS