Answer to Question #229991 in Linear Algebra for Bgs Chowdary

Question #229991
Find the linear transformation to reducethe following quadratic forms into cononical form using diagonalation method 3x^2+3y^2+3z^2+2xy+2xz-2yz
1
Expert's answer
2021-09-09T14:27:48-0400

Solution;

The matrix representation,A,of the equation is;

A=(311131113)A=\begin{pmatrix} 3 & 1&1\\ 1 & 3&-1\\ 1&-1&3 \end{pmatrix}

Find the characteristic equation from,

AλI=0|A-\lambda I|=0

i.e;

λ3s1λ2+s2λs3=0\lambda^3-s_1\lambda^2+s_2\lambda-s_3=0

In which ;

s1s_1 =Sum of the main diagonal elements.

s1=3+3+3=9s_1=3+3+3=9

s2s_2 = Sum of the minors of the main diagonal elements;

s2=3113s_2=\begin{vmatrix} 3 & 1 \\ 1& 3 \end{vmatrix} +3113\begin{vmatrix} 3 & 1\\ 1 & 3 \end{vmatrix} +3113\begin{vmatrix} 3& -1 \\ -1 & 3 \end{vmatrix}

s2=24s_2=24

s3s_3 =|A|=311131113\begin{vmatrix} 3& 1&1 \\ 1 & 3&-1\\ 1&-1&3 \end{vmatrix} =16

The characteristic equation is ;

λ39λ2+24λ16=0\lambda^3-9\lambda^2+24\lambda-16=0

Solve for the roots of the equation;

If λ=1\lambda=1

1-9+24-16=0

Hence ,λ=1\lambda =1 is a root.

By synthetic Division,other roots are from;

λ28λ+16=0\lambda ^2-8\lambda+16=0

(λ4)(λ4)=0(\lambda-4)(\lambda-4)=0

λ=4,4\lambda=4,4

Hence the eigenvalues are;

4,4,1

Find the eigenvectors;

(A-λI\lambda I )x=0

[(311131113)[\begin{pmatrix} 3 &1&1\\ 1& 3&-1\\ 1&-1&3 \end{pmatrix} -(λ00λ000λ)]x=0\begin{pmatrix} \lambda & 0 \\ 0 & \lambda&0\\ 0&0&\lambda \end{pmatrix}]x=0

To have;

[3λ1113λ1113λ]\begin{bmatrix} 3-\lambda & 1&1 \\ 1 & 3-\lambda&-1\\ 1&-1&3-\lambda \end{bmatrix} [xyz]=0\begin{bmatrix} x \\ y\\ z\\ \end{bmatrix}=0

Take;

Case (i),if λ\lambda =4,the equation becomes;

[111111111]\begin{bmatrix} -1& 1&1\\ 1 & -1&-1\\ 1&-1&-1 \end{bmatrix} [xyz]=0\begin{bmatrix} x \\ y\\ z\\ \end{bmatrix}=0

-x+y+z=0

x-y-z=0

x-y-z=0

The equation gives ;

x1=[211]x_1=\begin{bmatrix} 2\\ 1\\ 1 \end{bmatrix}

Case(iii),λ=1\lambda =1 ,the equation becomes;

[211121112]\begin{bmatrix} 2 & 1&1\\ 1 & 2&-1\\ 1&-1&2 \end{bmatrix} [xyz]=0\begin{bmatrix} x\\ y\\ z \end{bmatrix}=0

2x+y+z=0

x+2y-z=0

x-y+2y=0

The equations give;

x3=[111]x_3=\begin{bmatrix} -1\\ 1\\ 1 \end{bmatrix}

To find the third set of eigenvectors,x3x_3

Since;

x1x2T=0x_1x_2^T=0

x2x3T=0x_2x_3^T=0

x3x1T=0x_3x_1^T=0

We know;

x1=[211]x_1=\begin{bmatrix} 2 \\ 1\\ 1 \end{bmatrix} ,x3=[111]x_3=\begin{bmatrix} -1\\ 1\\ 1 \end{bmatrix}

Let ;

x2=[abc]x_2=\begin{bmatrix} a \\ b\\ c \end{bmatrix}

Hence;

[211111]\begin{bmatrix} 2 & 1&1 \\ -1 & 1&1 \end{bmatrix}[abc]=0\begin{bmatrix} a \\ b\\ c \end{bmatrix}=0

2a+b+c=0

-a+b+c=0

Hence,

x2=[011]x_2=\begin{bmatrix} 0\\ -1\\ 1\\ \end{bmatrix}

The model matrix,M from the eigenvectors is;

(201111111)\begin{pmatrix} 2 & 0&-1\\ 1 & -1&1\\ 1&1&1 \end{pmatrix}

The normalised model matrix ,N,is as follows;

Length of eigenvectors;

x1=4+1+1=6x_1=\sqrt{4+1+1}=\sqrt6

x2=0+1+1=2x_2=\sqrt{0+1+1}=\sqrt2

x3=1+1+1=3x_3=\sqrt{1+1+1}=\sqrt 3

N=[26013161213161213]N=\begin{bmatrix} \frac{2}{\sqrt6}&0&\frac{-1}{\sqrt3} \\ \frac{1}{\sqrt6} & \frac{-1}{\sqrt2}&\frac{1}{\sqrt3}\\ \frac{1}{\sqrt6}&\frac{1}{\sqrt2}&\frac{1}{\sqrt3} \end{bmatrix}

Transponse normalised model matrix ,NTN^T ;

NT=[26161601212131313]N^T=\begin{bmatrix} \frac{2}{\sqrt6}&\frac{1}{\sqrt6}&\frac{1}{\sqrt6} \\ 0 & \frac{-1}{\sqrt2}&\frac{1}{\sqrt2}\\ \frac{-1}{\sqrt3}&\frac{1}{\sqrt3}&\frac{1}{\sqrt3} \end{bmatrix}

Find the diagonalized matrix,D=NTAND=N^TAN

D=[400040001]D=\begin{bmatrix} 4 & 0&0 \\ 0 & 4&0\\ 0&0&1 \end{bmatrix}

Hence D is the matrix of linear transformation of the quadratic form into canonical form.

Thus the linear transformation,X is;

X=Dy

X=(400040001)\begin{pmatrix} 4& 0&0 \\ 0 & 4&0\\ 0&0&1 \end{pmatrix} (y1,y2,y3)(y_1,y_2,y_3)







Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

No comments. Be the first!

Leave a comment