Compute all the minors and cofactors of
1 2 3
2 0 1
2 3 4
"A=\\begin{bmatrix}\n 1 & 2&3 \\\\\n 2 & 0&1 \\\\\n 2&3&4\n\\end{bmatrix}"
Let "M_{ij}" stands for Minors and "C_{ij}" is cofactors
where "i=i^{th}" row and "j=j^{th }" column of the matrix
"M_{11}=\\begin{vmatrix}\n 0 & 1 \\\\\n 3 & 4\n\\end{vmatrix}=0-3=-3\\ \\ \\ ;\\ \\ C_{11}=(-1)^{1+1}M_{11}=-3\\\\\\ \\\\M_{12}=\\begin{vmatrix}\n 2 & 1 \\\\\n 2 & 4\n\\end{vmatrix}=8-2=6\\ \\ ;\\ \\ C_{12}=(-1)^{1+2}M_{12}=-6\\\\\\ \\\\M_{13}=\\begin{vmatrix}\n 2 & 0 \\\\\n 2 & 3\n\\end{vmatrix}=6-0=6\\ \\ ;\\ \\ C_{13}= (-1)^{1+3}M_{13}=6\\\\\\ \\\\M_{21}=\\begin{vmatrix}\n 2 & 3 \\\\\n 3 & 4\n\\end{vmatrix}=8-9=-1\\ \\ ;\\ \\ C_{13}=(-1)^{2+1}M_{21}=1\\\\\\ \\\\M_{22}=\\begin{vmatrix}\n 1 & 3 \\\\\n 2 & 4\n\\end{vmatrix}=4-6=-2\\ \\ ;\\ \\ C_{22}=(-1)^{2+2}M_{22}=-2\\\\\\ \\\\M_{23}=\\begin{vmatrix}\n 1 & 2 \\\\\n 2 & 3\n\\end{vmatrix}=3-4=-1\\ \\ ;\\ \\ C_{23}=(-1)^{2+3}M_{23}=1\\\\\\ \\\\M_{31}=\\begin{vmatrix}\n 2 & 3 \\\\\n 0 & 1\n\\end{vmatrix}=2-0=2\\ \\ ;\\ \\ C_{31}=(-1)^{3+1}M_{31}=2\n\\\\\\ \\\\M_{32=}\\begin{vmatrix}\n 1 & 3 \\\\\n 2 & 1\n\\end{vmatrix}=1-6=-5\\ \\ ;\\ \\ C_{32}=(-1)^{3+2}M_{32}=5\\\\\\ \\\\M_{33}=\\begin{vmatrix}\n 1 & 2 \\\\\n 2 & 0\n\\end{vmatrix}=0-4=-4\\ \\ ;\\ \\ C_{33}=(-1)^{3+3}M_{33}=-4"
Comments
Leave a comment