Answer to Question #196878 in Linear Algebra for Mpopo

Question #196878

Compute all the minors and cofactors of

1 2 3

2 0 1

2 3 4


1
Expert's answer
2021-05-26T03:27:19-0400

"A=\\begin{bmatrix}\n 1 & 2&3 \\\\\n 2 & 0&1 \\\\\n 2&3&4\n\\end{bmatrix}"


Let "M_{ij}" stands for Minors and "C_{ij}" is cofactors

where "i=i^{th}" row and "j=j^{th }" column of the matrix


"M_{11}=\\begin{vmatrix}\n 0 & 1 \\\\\n 3 & 4\n\\end{vmatrix}=0-3=-3\\ \\ \\ ;\\ \\ C_{11}=(-1)^{1+1}M_{11}=-3\\\\\\ \\\\M_{12}=\\begin{vmatrix}\n 2 & 1 \\\\\n 2 & 4\n\\end{vmatrix}=8-2=6\\ \\ ;\\ \\ C_{12}=(-1)^{1+2}M_{12}=-6\\\\\\ \\\\M_{13}=\\begin{vmatrix}\n 2 & 0 \\\\\n 2 & 3\n\\end{vmatrix}=6-0=6\\ \\ ;\\ \\ C_{13}= (-1)^{1+3}M_{13}=6\\\\\\ \\\\M_{21}=\\begin{vmatrix}\n 2 & 3 \\\\\n 3 & 4\n\\end{vmatrix}=8-9=-1\\ \\ ;\\ \\ C_{13}=(-1)^{2+1}M_{21}=1\\\\\\ \\\\M_{22}=\\begin{vmatrix}\n 1 & 3 \\\\\n 2 & 4\n\\end{vmatrix}=4-6=-2\\ \\ ;\\ \\ C_{22}=(-1)^{2+2}M_{22}=-2\\\\\\ \\\\M_{23}=\\begin{vmatrix}\n 1 & 2 \\\\\n 2 & 3\n\\end{vmatrix}=3-4=-1\\ \\ ;\\ \\ C_{23}=(-1)^{2+3}M_{23}=1\\\\\\ \\\\M_{31}=\\begin{vmatrix}\n 2 & 3 \\\\\n 0 & 1\n\\end{vmatrix}=2-0=2\\ \\ ;\\ \\ C_{31}=(-1)^{3+1}M_{31}=2\n\\\\\\ \\\\M_{32=}\\begin{vmatrix}\n 1 & 3 \\\\\n 2 & 1\n\\end{vmatrix}=1-6=-5\\ \\ ;\\ \\ C_{32}=(-1)^{3+2}M_{32}=5\\\\\\ \\\\M_{33}=\\begin{vmatrix}\n 1 & 2 \\\\\n 2 & 0\n\\end{vmatrix}=0-4=-4\\ \\ ;\\ \\ C_{33}=(-1)^{3+3}M_{33}=-4"




Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

No comments. Be the first!

Leave a comment

LATEST TUTORIALS
New on Blog
APPROVED BY CLIENTS