Solution: \textbf{Solution:} Solution:
Let E E E be the identity matrix:
E = ( 1 0 … 0 0 1 … 0 ⋮ ⋮ ⋱ ⋮ 0 0 … 1 ) = ( … E i … E j … ) E=\left(
\begin{array}{cccc}
1 & 0 & \ldots & 0\\
0 & 1 & \ldots & 0\\
\vdots & \vdots & \ddots & \vdots\\
0 & 0 & \ldots & 1
\end{array}
\right)=\left(
\begin{array}{cccc}
\ldots \\
E_{i} \\
\ldots \\
E_{j} \\
\ldots
\end{array}
\right) E = ⎝ ⎛ 1 0 ⋮ 0 0 1 ⋮ 0 … … ⋱ … 0 0 ⋮ 1 ⎠ ⎞ = ⎝ ⎛ … E i … E j … ⎠ ⎞ .
Let P i j P_{ij} P ij be the permutation matrix:
P i j = ( … E j … E i … ) P_{ij}=\left(
\begin{array}{cccc}
\ldots \\
E_{j} \\
\ldots \\
E_{i} \\
\ldots
\end{array}
\right) P ij = ⎝ ⎛ … E j … E i … ⎠ ⎞ .
Then the result of left multiplication of the matrix P i j P_{ij} P ij by the matrix
A = ( … A i … A j … ) A=\left(
\begin{array}{cccc}
\ldots \\
A_{i} \\
\ldots \\
A_{j} \\
\ldots
\end{array}
\right) A = ⎝ ⎛ … A i … A j … ⎠ ⎞
is the matrix obtained from the original matrix A A A by permuting its i i i -th and j j j -th rows:
P i j A = ( … A j … A i … ) P_{ij}A=\left(
\begin{array}{cccc}
\ldots \\
A_{j} \\
\ldots \\
A_{i} \\
\ldots
\end{array}
\right) P ij A = ⎝ ⎛ … A j … A i … ⎠ ⎞ .
For example,
P 23 A = ( 1 0 0 0 0 1 0 1 0 ) ( a 11 a 12 a 13 a 21 a 22 a 23 a 31 a 32 a 33 ) = ( a 11 a 12 a 13 a 31 a 32 a 33 a 21 a 22 a 23 ) P_{23}A=\begin{pmatrix}
1 & 0 & 0 \\
0 & 0 & 1 \\
0 & 1 & 0
\end{pmatrix}\begin{pmatrix}
a_{11} & a_{12} & a_{13} \\
a_{21} & a_{22} & a_{23} \\
a_{31} & a_{32} & a_{33}
\end{pmatrix}=\begin{pmatrix}
a_{11} & a_{12} & a_{13} \\
a_{31} & a_{32} & a_{33} \\
a_{21} & a_{22} & a_{23}
\end{pmatrix} P 23 A = ⎝ ⎛ 1 0 0 0 0 1 0 1 0 ⎠ ⎞ ⎝ ⎛ a 11 a 21 a 31 a 12 a 22 a 32 a 13 a 23 a 33 ⎠ ⎞ = ⎝ ⎛ a 11 a 31 a 21 a 12 a 32 a 22 a 13 a 33 a 23 ⎠ ⎞ .
--------------------------------------------------------------------------------------------------------------------
5.1) E 1 A = B E_{1}A=B E 1 A = B
E 1 ( − 2 7 1 3 4 1 8 1 5 ) = ( 8 1 5 3 4 1 − 2 7 1 ) E_{1}\begin{pmatrix}
-2\ & 7\ & 1 \\
3 & 4\ & 1 \\
8 &1\ & 5
\end{pmatrix}=\begin{pmatrix}
8 & 1\ & 5 \\
3 & 4\ & 1 \\
-2\ & 7\ & 1
\end{pmatrix} E 1 ⎝ ⎛ − 2 3 8 7 4 1 1 1 5 ⎠ ⎞ = ⎝ ⎛ 8 3 − 2 1 4 7 5 1 1 ⎠ ⎞ .
P i j = P 13 ⇒ E 1 = P 13 = ( 0 0 1 0 1 0 1 0 0 ) P_{ij}=P_{13}\Rightarrow E_{1}=P_{13}=\begin{pmatrix}
0 & 0 & 1 \\
0 & 1 & 0 \\
1 & 0 & 0
\end{pmatrix} P ij = P 13 ⇒ E 1 = P 13 = ⎝ ⎛ 0 0 1 0 1 0 1 0 0 ⎠ ⎞ .
Check: \textbf{Check:} Check:
( 0 0 1 0 1 0 1 0 0 ) ( − 2 7 1 3 4 1 8 1 5 ) = ( 8 1 5 3 4 1 − 2 7 1 ) \begin{pmatrix}
0 & 0 & 1 \\
0 & 1 & 0 \\
1 & 0 & 0
\end{pmatrix}\begin{pmatrix}
-2\ & 7\ & 1 \\
3 & 4\ & 1 \\
8 &1\ & 5
\end{pmatrix}=\begin{pmatrix}
8 & 1\ & 5 \\
3 & 4\ & 1 \\
-2\ & 7\ & 1
\end{pmatrix} ⎝ ⎛ 0 0 1 0 1 0 1 0 0 ⎠ ⎞ ⎝ ⎛ − 2 3 8 7 4 1 1 1 5 ⎠ ⎞ = ⎝ ⎛ 8 3 − 2 1 4 7 5 1 1 ⎠ ⎞ .
--------------------------------------------------------------------------------------------------------------------
5.2) E 1 B = A E_{1}B=A E 1 B = A
E 1 ( 8 1 5 3 4 1 − 2 7 1 ) = ( − 2 7 1 3 4 1 8 1 5 ) E_{1}\begin{pmatrix}
8 & 1\ & 5 \\
3 & 4\ & 1 \\
-2\ & 7\ & 1
\end{pmatrix}=\begin{pmatrix}
-2\ & 7\ & 1 \\
3 & 4\ & 1 \\
8 &1\ & 5
\end{pmatrix} E 1 ⎝ ⎛ 8 3 − 2 1 4 7 5 1 1 ⎠ ⎞ = ⎝ ⎛ − 2 3 8 7 4 1 1 1 5 ⎠ ⎞ .
P i j = P 13 ⇒ E 1 = P 13 = ( 0 0 1 0 1 0 1 0 0 ) P_{ij}=P_{13}\Rightarrow E_{1}=P_{13}=\begin{pmatrix}
0 & 0 & 1 \\
0 & 1 & 0 \\
1 & 0 & 0
\end{pmatrix} P ij = P 13 ⇒ E 1 = P 13 = ⎝ ⎛ 0 0 1 0 1 0 1 0 0 ⎠ ⎞ .
Check: \textbf{Check:} Check:
( 0 0 1 0 1 0 1 0 0 ) ( 8 1 5 3 4 1 − 2 7 1 ) = ( − 2 7 1 3 4 1 8 1 5 ) \begin{pmatrix}
0 & 0 & 1 \\
0 & 1 & 0 \\
1 & 0 & 0
\end{pmatrix}\begin{pmatrix}
8 & 1\ & 5 \\
3 & 4\ & 1 \\
-2\ & 7\ & 1
\end{pmatrix}=\begin{pmatrix}
-2\ & 7\ & 1 \\
3 & 4\ & 1 \\
8 &1\ & 5
\end{pmatrix} ⎝ ⎛ 0 0 1 0 1 0 1 0 0 ⎠ ⎞ ⎝ ⎛ 8 3 − 2 1 4 7 5 1 1 ⎠ ⎞ = ⎝ ⎛ − 2 3 8 7 4 1 1 1 5 ⎠ ⎞ .
--------------------------------------------------------------------------------------------------------------------
Let A = ( … A i … A j … ) , A ~ = ( … A i + λ A j … A j … ) A=\left(
\begin{array}{cccc}
\ldots \\
A_{i} \\
\ldots \\
A_{j} \\
\ldots
\end{array}
\right),
\,\widetilde{A}=\left(
\begin{array}{cccc}
\ldots \\
A_{i}+\lambda A_{j} \\
\ldots \\
A_{j} \\
\ldots
\end{array}
\right) A = ⎝ ⎛ … A i … A j … ⎠ ⎞ , A = ⎝ ⎛ … A i + λ A j … A j … ⎠ ⎞ , then
A ~ = N i j ( λ ) ( … A i … A j … ) = ( 1 0 … 0 … 0 … 0 0 1 … 0 … 0 … 0 ⋮ ⋮ ⋱ ⋮ ⋱ ⋮ ⋱ ⋮ 0 0 … 1 … λ … 0 ⋮ ⋮ ⋱ ⋮ ⋱ ⋮ ⋱ ⋮ 0 0 … 0 … 0 … 1 ) ( … A i … A j … ) = ( … A i + λ A j … A j … ) . \widetilde{A}=N_{ij}(\lambda)\left(
\begin{array}{cccc}
\ldots \\
A_{i} \\
\ldots \\
A_{j} \\
\ldots
\end{array}
\right)=\left(
\begin{array}{cccc}
1 && 0 & \ldots & 0 & \ldots & 0 &\ldots & 0\\
0 && 1 & \ldots & 0 & \ldots & 0 &\ldots & 0\\
\vdots && \vdots & \ddots & \vdots & \ddots & \vdots & \ddots & \vdots\\
0 && 0 & \ldots & 1 & \ldots & \lambda & \ldots & 0\\
\vdots && \vdots & \ddots & \vdots & \ddots & \vdots & \ddots & \vdots\\
0 && 0 & \ldots & 0 & \ldots & 0 & \ldots & 1
\end{array}
\right)\left(
\begin{array}{cccc}
\ldots \\
A_{i} \\
\ldots \\
A_{j} \\
\ldots
\end{array}
\right)=\left(
\begin{array}{cccc}
\ldots \\
A_{i}+\lambda A_{j} \\
\ldots \\
A_{j} \\
\ldots
\end{array}
\right). A = N ij ( λ ) ⎝ ⎛ … A i … A j … ⎠ ⎞ = ⎝ ⎛ 1 0 ⋮ 0 ⋮ 0 0 1 ⋮ 0 ⋮ 0 … … ⋱ … ⋱ … 0 0 ⋮ 1 ⋮ 0 … … ⋱ … ⋱ … 0 0 ⋮ λ ⋮ 0 … … ⋱ … ⋱ … 0 0 ⋮ 0 ⋮ 1 ⎠ ⎞ ⎝ ⎛ … A i … A j … ⎠ ⎞ = ⎝ ⎛ … A i + λ A j … A j … ⎠ ⎞ . --------------------------------------------------------------------------------------------------------------------
5.3) E 2 A = C E_{2}A=C E 2 A = C
E 2 ( − 2 7 1 3 4 1 8 1 5 ) = ( − 2 7 1 3 4 1 2 − 7 3 ) E_{2}\begin{pmatrix}
-2\ & 7\ & 1 \\
3 & 4\ & 1 \\
8 &1\ & 5
\end{pmatrix}=\begin{pmatrix}
-2\ & 7 & 1 \\
3 & 4 & 1 \\
2 &-7\ & 3
\end{pmatrix} E 2 ⎝ ⎛ − 2 3 8 7 4 1 1 1 5 ⎠ ⎞ = ⎝ ⎛ − 2 3 2 7 4 − 7 1 1 3 ⎠ ⎞ .
1-st occasion:
( 2 − 7 3 ) = ( 8 1 5 ) + λ ( − 2 7 1 ) \begin{pmatrix}
2 & -7 & 3
\end{pmatrix}=\begin{pmatrix}
8 & 1 & 5
\end{pmatrix}+\lambda\begin{pmatrix}
-2 & 7 & 1
\end{pmatrix} ( 2 − 7 3 ) = ( 8 1 5 ) + λ ( − 2 7 1 ) .
{ 2 = 8 − 2 λ , − 7 = 1 + 7 λ , 3 = 5 + λ . \begin{cases}
2=8-2\lambda,
\\
-7=1+7\lambda,
\\
3=5+\lambda.
\end{cases} ⎩ ⎨ ⎧ 2 = 8 − 2 λ , − 7 = 1 + 7 λ , 3 = 5 + λ .
λ ∈ ∅ \lambda\in\varnothing λ ∈ ∅ .
2-nd occasion:
( 2 − 7 3 ) = ( 8 1 5 ) + λ ( 3 4 1 ) \begin{pmatrix}
2 & -7 & 3
\end{pmatrix}=\begin{pmatrix}
8 & 1 & 5
\end{pmatrix}+\lambda\begin{pmatrix}
3 & 4 & 1
\end{pmatrix} ( 2 − 7 3 ) = ( 8 1 5 ) + λ ( 3 4 1 ) .
{ 2 = 8 + 3 λ , − 7 = 1 + 4 λ , 3 = 5 + λ . \begin{cases}
2=8+3\lambda,
\\
-7=1+4\lambda,
\\
3=5+\lambda.
\end{cases} ⎩ ⎨ ⎧ 2 = 8 + 3 λ , − 7 = 1 + 4 λ , 3 = 5 + λ .
λ = − 2 \lambda=-2 λ = − 2 .
i = 3 , j = 2 , λ = − 2 ⇒ N i j ( λ ) = N 32 ( − 2 ) . i=3, j=2, \lambda=-2\Rightarrow N_{ij}(\lambda)=N_{32}(-2). i = 3 , j = 2 , λ = − 2 ⇒ N ij ( λ ) = N 32 ( − 2 ) .
E 2 = N 32 ( − 2 ) = ( 1 0 0 0 1 0 0 − 2 1 ) E_{2}=N_{32}(-2)=\begin{pmatrix}
1 & 0 & 0 \\
0 & 1 & 0 \\
0 & -2 & 1
\end{pmatrix} E 2 = N 32 ( − 2 ) = ⎝ ⎛ 1 0 0 0 1 − 2 0 0 1 ⎠ ⎞ .
Check: \textbf{Check:} Check:
( 1 0 0 0 1 0 0 − 2 1 ) ( − 2 7 1 3 4 1 8 1 5 ) = ( − 2 7 1 3 4 1 2 − 7 3 ) \begin{pmatrix}
1 & 0 & 0 \\
0 & 1 & 0 \\
0 & -2 & 1
\end{pmatrix}\begin{pmatrix}
-2\ & 7\ & 1 \\
3 & 4\ & 1 \\
8 &1\ & 5
\end{pmatrix}=\begin{pmatrix}
-2\ & 7 & 1 \\
3 & 4 & 1 \\
2 &-7\ & 3
\end{pmatrix} ⎝ ⎛ 1 0 0 0 1 − 2 0 0 1 ⎠ ⎞ ⎝ ⎛ − 2 3 8 7 4 1 1 1 5 ⎠ ⎞ = ⎝ ⎛ − 2 3 2 7 4 − 7 1 1 3 ⎠ ⎞ .
--------------------------------------------------------------------------------------------------------------------
5.4) E 3 C = A E_{3}C=A E 3 C = A
E 3 ( − 2 7 1 3 4 1 2 − 7 3 ) = ( − 2 7 1 3 4 1 8 1 5 ) E_{3}\begin{pmatrix}
-2 & 7 & 1 \\
3 & 4 & 1\\
2 & -7 & 3
\end{pmatrix}=\begin{pmatrix}
-2 & 7 & 1 \\
3 & 4 & 1 \\
8 & 1 & 5
\end{pmatrix} E 3 ⎝ ⎛ − 2 3 2 7 4 − 7 1 1 3 ⎠ ⎞ = ⎝ ⎛ − 2 3 8 7 4 1 1 1 5 ⎠ ⎞ .
1-st occasion:
( 8 1 5 ) = ( 2 − 7 3 ) + λ ( − 2 7 1 ) \begin{pmatrix}
8 & 1 & 5
\end{pmatrix}=\begin{pmatrix}
2 & -7 & 3
\end{pmatrix}+\lambda\begin{pmatrix}
-2 & 7 & 1
\end{pmatrix} ( 8 1 5 ) = ( 2 − 7 3 ) + λ ( − 2 7 1 ) .
{ 8 = 2 − 2 λ , 1 = − 7 + 7 λ , 5 = 3 + λ . \begin{cases}
8=2-2\lambda,
\\
1=-7+7\lambda,
\\
5=3+\lambda.
\end{cases} ⎩ ⎨ ⎧ 8 = 2 − 2 λ , 1 = − 7 + 7 λ , 5 = 3 + λ .
λ ∈ ∅ \lambda\in\varnothing λ ∈ ∅ .
2-nd occasion:
( 8 1 5 ) = ( 2 − 7 3 ) + λ ( 3 4 1 ) \begin{pmatrix}
8 & 1 & 5
\end{pmatrix}=\begin{pmatrix}
2 & -7 & 3
\end{pmatrix}+\lambda\begin{pmatrix}
3 & 4 & 1
\end{pmatrix} ( 8 1 5 ) = ( 2 − 7 3 ) + λ ( 3 4 1 ) .
{ 8 = 2 + 3 λ , 1 = − 7 + 4 λ , 5 = 3 + λ . \begin{cases}
8=2+3\lambda,
\\
1=-7+4\lambda,
\\
5=3+\lambda.
\end{cases} ⎩ ⎨ ⎧ 8 = 2 + 3 λ , 1 = − 7 + 4 λ , 5 = 3 + λ .
λ = 2 \lambda=2 λ = 2 .
i = 3 , j = 2 , λ = 2 ⇒ N i j ( λ ) = N 32 ( 2 ) . i=3, j=2, \lambda=2\Rightarrow N_{ij}(\lambda)=N_{32}(2). i = 3 , j = 2 , λ = 2 ⇒ N ij ( λ ) = N 32 ( 2 ) .
E 3 = N 32 ( 2 ) = ( 1 0 0 0 1 0 0 2 1 ) E_{3}=N_{32}(2)=\begin{pmatrix}
1 & 0 & 0 \\
0 & 1 & 0 \\
0 & 2 & 1
\end{pmatrix} E 3 = N 32 ( 2 ) = ⎝ ⎛ 1 0 0 0 1 2 0 0 1 ⎠ ⎞ .
Check: \textbf{Check:} Check:
( 1 0 0 0 1 0 0 2 1 ) ( − 2 7 1 3 4 1 2 − 7 3 ) = ( − 2 7 1 3 4 1 8 1 5 ) \begin{pmatrix}
1 & 0 & 0 \\
0 & 1 & 0 \\
0 & 2 & 1
\end{pmatrix}\begin{pmatrix}
-2 & 7 & 1 \\
3 & 4 & 1\\
2 & -7 & 3
\end{pmatrix}=\begin{pmatrix}
-2 & 7 & 1 \\
3 & 4 & 1 \\
8 & 1 & 5
\end{pmatrix} ⎝ ⎛ 1 0 0 0 1 2 0 0 1 ⎠ ⎞ ⎝ ⎛ − 2 3 2 7 4 − 7 1 1 3 ⎠ ⎞ = ⎝ ⎛ − 2 3 8 7 4 1 1 1 5 ⎠ ⎞ .
-----------------------------------------------------------------------------------------------------------------
Answer: \textbf{Answer:} Answer:
E 1 = ( 0 0 1 0 1 0 1 0 0 ) , E 2 = ( 1 0 0 0 1 0 0 − 2 1 ) , E 3 = ( 1 0 0 0 1 0 0 2 1 ) \boxed{E_{1}=\begin{pmatrix}
0 & 0 & 1 \\
0 & 1 & 0 \\
1 & 0 & 0
\end{pmatrix}, \, E_{2}=\begin{pmatrix}
1 & 0 & 0 \\
0 & 1 & 0 \\
0 & -2 & 1
\end{pmatrix}, \, E_{3}=\begin{pmatrix}
1 & 0 & 0 \\
0 & 1 & 0 \\
0 & 2 & 1
\end{pmatrix}} E 1 = ⎝ ⎛ 0 0 1 0 1 0 1 0 0 ⎠ ⎞ , E 2 = ⎝ ⎛ 1 0 0 0 1 − 2 0 0 1 ⎠ ⎞ , E 3 = ⎝ ⎛ 1 0 0 0 1 2 0 0 1 ⎠ ⎞
Comments