Answer to Question #196702 in Linear Algebra for prince

Question #196702

Consider the matrices

A = −2 7 1

3 4 1

8 1 5,



B =8 1 5

3 4 1

−2 7 1,



C = −2 7 1

3 4 1

2 −7 3


Find elementary matrices E1, E2 and E3 such that


(5.1) E1A = B,

(5.2) E1B = A,

(5.3) E2A = C,

(5.4) E3C = A.




1
Expert's answer
2021-05-24T13:47:51-0400

"\\textbf{Solution:}"

Let "E" be the identity matrix:

"E=\\left(\n\\begin{array}{cccc}\n1 & 0 & \\ldots & 0\\\\\n0 & 1 & \\ldots & 0\\\\\n\\vdots & \\vdots & \\ddots & \\vdots\\\\\n0 & 0 & \\ldots & 1\n\\end{array}\n\\right)=\\left(\n\\begin{array}{cccc}\n\\ldots \\\\\nE_{i} \\\\\n\\ldots \\\\\n E_{j} \\\\\n\\ldots\n\\end{array}\n\\right)".

Let "P_{ij}" be the permutation matrix:

"P_{ij}=\\left(\n\\begin{array}{cccc}\n\\ldots \\\\\nE_{j} \\\\\n\\ldots \\\\\n E_{i} \\\\\n\\ldots\n\\end{array}\n\\right)".

Then the result of left multiplication of the matrix "P_{ij}" by the matrix

"A=\\left(\n\\begin{array}{cccc}\n\\ldots \\\\\nA_{i} \\\\\n\\ldots \\\\\n A_{j} \\\\\n\\ldots\n\\end{array}\n\\right)"

is the matrix obtained from the original matrix "A" by permuting its "i"-th and "j"-th rows:

"P_{ij}A=\\left(\n\\begin{array}{cccc}\n\\ldots \\\\\nA_{j} \\\\\n\\ldots \\\\\n A_{i} \\\\\n\\ldots\n\\end{array}\n\\right)".

For example,

"P_{23}A=\\begin{pmatrix}\n 1 & 0 & 0 \\\\\n 0 & 0 & 1 \\\\\n 0 & 1 & 0\n\\end{pmatrix}\\begin{pmatrix}\n a_{11} & a_{12} & a_{13} \\\\\n a_{21} & a_{22} & a_{23} \\\\\n a_{31} & a_{32} & a_{33}\n\\end{pmatrix}=\\begin{pmatrix}\n a_{11} & a_{12} & a_{13} \\\\\n a_{31} & a_{32} & a_{33} \\\\\n a_{21} & a_{22} & a_{23}\n\\end{pmatrix}".

--------------------------------------------------------------------------------------------------------------------

5.1) "E_{1}A=B"

"E_{1}\\begin{pmatrix}\n -2\\ & 7\\ & 1 \\\\\n 3 & 4\\ & 1 \\\\\n 8 &1\\ & 5\n\\end{pmatrix}=\\begin{pmatrix}\n 8 & 1\\ & 5 \\\\\n 3 & 4\\ & 1 \\\\\n -2\\ & 7\\ & 1\n\\end{pmatrix}".


"P_{ij}=P_{13}\\Rightarrow E_{1}=P_{13}=\\begin{pmatrix}\n 0 & 0 & 1 \\\\\n 0 & 1 & 0 \\\\\n 1 & 0 & 0\n\\end{pmatrix}".

"\\textbf{Check:}"

"\\begin{pmatrix}\n 0 & 0 & 1 \\\\\n 0 & 1 & 0 \\\\\n 1 & 0 & 0\n\\end{pmatrix}\\begin{pmatrix}\n -2\\ & 7\\ & 1 \\\\\n 3 & 4\\ & 1 \\\\\n 8 &1\\ & 5\n\\end{pmatrix}=\\begin{pmatrix}\n 8 & 1\\ & 5 \\\\\n 3 & 4\\ & 1 \\\\\n -2\\ & 7\\ & 1\n\\end{pmatrix}".

--------------------------------------------------------------------------------------------------------------------

5.2) "E_{1}B=A"

"E_{1}\\begin{pmatrix}\n 8 & 1\\ & 5 \\\\\n 3 & 4\\ & 1 \\\\\n -2\\ & 7\\ & 1\n\\end{pmatrix}=\\begin{pmatrix}\n -2\\ & 7\\ & 1 \\\\\n 3 & 4\\ & 1 \\\\\n 8 &1\\ & 5\n\\end{pmatrix}".


"P_{ij}=P_{13}\\Rightarrow E_{1}=P_{13}=\\begin{pmatrix}\n 0 & 0 & 1 \\\\\n 0 & 1 & 0 \\\\\n 1 & 0 & 0\n\\end{pmatrix}".

"\\textbf{Check:}"

"\\begin{pmatrix}\n 0 & 0 & 1 \\\\\n 0 & 1 & 0 \\\\\n 1 & 0 & 0\n\\end{pmatrix}\\begin{pmatrix}\n 8 & 1\\ & 5 \\\\\n 3 & 4\\ & 1 \\\\\n -2\\ & 7\\ & 1\n\\end{pmatrix}=\\begin{pmatrix}\n -2\\ & 7\\ & 1 \\\\\n 3 & 4\\ & 1 \\\\\n 8 &1\\ & 5\n\\end{pmatrix}".

--------------------------------------------------------------------------------------------------------------------

Let "A=\\left(\n\\begin{array}{cccc}\n\\ldots \\\\\nA_{i} \\\\\n\\ldots \\\\\n A_{j} \\\\\n\\ldots\n\\end{array}\n\\right), \t\n\\,\\widetilde{A}=\\left(\n\\begin{array}{cccc}\n\\ldots \\\\\nA_{i}+\\lambda A_{j} \\\\\n\\ldots \\\\\n A_{j} \\\\\n\\ldots\n\\end{array}\n\\right)", then


"\\widetilde{A}=N_{ij}(\\lambda)\\left(\n\\begin{array}{cccc}\n\\ldots \\\\\nA_{i} \\\\\n\\ldots \\\\\n A_{j} \\\\\n\\ldots\n\\end{array}\n\\right)=\\left(\n\\begin{array}{cccc}\n1 && 0 & \\ldots & 0 & \\ldots & 0 &\\ldots & 0\\\\\n0 && 1 & \\ldots & 0 & \\ldots & 0 &\\ldots & 0\\\\\n\\vdots && \\vdots & \\ddots & \\vdots & \\ddots & \\vdots & \\ddots & \\vdots\\\\\n0 && 0 & \\ldots & 1 & \\ldots & \\lambda & \\ldots & 0\\\\\n\\vdots && \\vdots & \\ddots & \\vdots & \\ddots & \\vdots & \\ddots & \\vdots\\\\\n0 && 0 & \\ldots & 0 & \\ldots & 0 & \\ldots & 1\n\\end{array}\n\\right)\\left(\n\\begin{array}{cccc}\n\\ldots \\\\\nA_{i} \\\\\n\\ldots \\\\\n A_{j} \\\\\n\\ldots\n\\end{array}\n\\right)=\\left(\n\\begin{array}{cccc}\n\\ldots \\\\\nA_{i}+\\lambda A_{j} \\\\\n\\ldots \\\\\n A_{j} \\\\\n\\ldots\n\\end{array}\n\\right)." --------------------------------------------------------------------------------------------------------------------

5.3) "E_{2}A=C"

"E_{2}\\begin{pmatrix}\n -2\\ & 7\\ & 1 \\\\\n 3 & 4\\ & 1 \\\\\n 8 &1\\ & 5\n\\end{pmatrix}=\\begin{pmatrix}\n -2\\ & 7 & 1 \\\\\n 3 & 4 & 1 \\\\\n 2 &-7\\ & 3\n\\end{pmatrix}".

1-st occasion:

"\\begin{pmatrix}\n 2 & -7 & 3 \n\\end{pmatrix}=\\begin{pmatrix}\n 8 & 1 & 5 \n\\end{pmatrix}+\\lambda\\begin{pmatrix}\n -2 & 7 & 1 \n\\end{pmatrix}".

"\\begin{cases}\n 2=8-2\\lambda, \n \\\\\n -7=1+7\\lambda,\n \\\\\n 3=5+\\lambda.\n \\end{cases}"

"\\lambda\\in\\varnothing".

2-nd occasion:

"\\begin{pmatrix}\n 2 & -7 & 3 \n\\end{pmatrix}=\\begin{pmatrix}\n 8 & 1 & 5 \n\\end{pmatrix}+\\lambda\\begin{pmatrix}\n 3 & 4 & 1 \n\\end{pmatrix}".

"\\begin{cases}\n 2=8+3\\lambda, \n \\\\\n -7=1+4\\lambda,\n \\\\\n 3=5+\\lambda.\n \\end{cases}"

"\\lambda=-2".

"i=3, j=2, \\lambda=-2\\Rightarrow N_{ij}(\\lambda)=N_{32}(-2)."

"E_{2}=N_{32}(-2)=\\begin{pmatrix}\n 1 & 0 & 0 \\\\\n 0 & 1 & 0 \\\\\n 0 & -2 & 1\n\\end{pmatrix}".

"\\textbf{Check:}"

"\\begin{pmatrix}\n 1 & 0 & 0 \\\\\n 0 & 1 & 0 \\\\\n 0 & -2 & 1\n\\end{pmatrix}\\begin{pmatrix}\n -2\\ & 7\\ & 1 \\\\\n 3 & 4\\ & 1 \\\\\n 8 &1\\ & 5\n\\end{pmatrix}=\\begin{pmatrix}\n -2\\ & 7 & 1 \\\\\n 3 & 4 & 1 \\\\\n 2 &-7\\ & 3\n\\end{pmatrix}".

--------------------------------------------------------------------------------------------------------------------

5.4) "E_{3}C=A"

"E_{3}\\begin{pmatrix}\n -2 & 7 & 1 \\\\\n 3 & 4 & 1\\\\\n 2 & -7 & 3\n\\end{pmatrix}=\\begin{pmatrix}\n -2 & 7 & 1 \\\\\n 3 & 4 & 1 \\\\\n 8 & 1 & 5\n\\end{pmatrix}".

1-st occasion:

"\\begin{pmatrix}\n 8 & 1 & 5 \n\\end{pmatrix}=\\begin{pmatrix}\n 2 & -7 & 3 \n\\end{pmatrix}+\\lambda\\begin{pmatrix}\n -2 & 7 & 1 \n\\end{pmatrix}".

"\\begin{cases}\n 8=2-2\\lambda, \n \\\\\n 1=-7+7\\lambda,\n \\\\\n 5=3+\\lambda.\n \\end{cases}"

"\\lambda\\in\\varnothing".

2-nd occasion:

"\\begin{pmatrix}\n 8 & 1 & 5 \n\\end{pmatrix}=\\begin{pmatrix}\n 2 & -7 & 3 \n\\end{pmatrix}+\\lambda\\begin{pmatrix}\n 3 & 4 & 1 \n\\end{pmatrix}".

"\\begin{cases}\n 8=2+3\\lambda, \n \\\\\n 1=-7+4\\lambda,\n \\\\\n 5=3+\\lambda.\n \\end{cases}"

"\\lambda=2".

"i=3, j=2, \\lambda=2\\Rightarrow N_{ij}(\\lambda)=N_{32}(2)."

"E_{3}=N_{32}(2)=\\begin{pmatrix}\n 1 & 0 & 0 \\\\\n 0 & 1 & 0 \\\\\n 0 & 2 & 1\n\\end{pmatrix}".

"\\textbf{Check:}"

"\\begin{pmatrix}\n 1 & 0 & 0 \\\\\n 0 & 1 & 0 \\\\\n 0 & 2 & 1\n\\end{pmatrix}\\begin{pmatrix}\n -2 & 7 & 1 \\\\\n 3 & 4 & 1\\\\\n 2 & -7 & 3\n\\end{pmatrix}=\\begin{pmatrix}\n -2 & 7 & 1 \\\\\n 3 & 4 & 1 \\\\\n 8 & 1 & 5\n\\end{pmatrix}".

-----------------------------------------------------------------------------------------------------------------

"\\textbf{Answer:}"

"\\boxed{E_{1}=\\begin{pmatrix}\n 0 & 0 & 1 \\\\\n 0 & 1 & 0 \\\\\n 1 & 0 & 0\n\\end{pmatrix}, \\, E_{2}=\\begin{pmatrix}\n 1 & 0 & 0 \\\\\n 0 & 1 & 0 \\\\\n 0 & -2 & 1\n\\end{pmatrix}, \\, E_{3}=\\begin{pmatrix}\n 1 & 0 & 0 \\\\\n 0 & 1 & 0 \\\\\n 0 & 2 & 1\n\\end{pmatrix}}"


Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

No comments. Be the first!

Leave a comment

LATEST TUTORIALS
New on Blog
APPROVED BY CLIENTS