Augmented matrix
A = [ 1 − 1 2 1 3 − 1 5 − 2 − 4 2 x 2 − 8 x + 2 ] A=\begin{bmatrix}
1 & -1 & 2 & 1 \\
3 & -1 & 5 & -2 \\
-4 & 2 & x^2-8 & x+2
\end{bmatrix} A = ⎣ ⎡ 1 3 − 4 − 1 − 1 2 2 5 x 2 − 8 1 − 2 x + 2 ⎦ ⎤
R 2 = R 2 − 3 R 1 R_2=R_2-3R_1 R 2 = R 2 − 3 R 1
[ 1 − 1 2 1 0 2 − 1 − 5 − 4 2 x 2 − 8 x + 2 ] \begin{bmatrix}
1 & -1 & 2 & 1 \\
0 & 2 & -1 & -5 \\
-4 & 2 & x^2-8 & x+2
\end{bmatrix} ⎣ ⎡ 1 0 − 4 − 1 2 2 2 − 1 x 2 − 8 1 − 5 x + 2 ⎦ ⎤
R 3 = R 3 + 4 R 1 R_3=R_3+4R_1 R 3 = R 3 + 4 R 1
[ 1 − 1 2 1 0 2 − 1 − 5 0 − 2 x 2 x + 6 ] \begin{bmatrix}
1 & -1 & 2 & 1 \\
0 & 2 & -1 & -5 \\
0 & -2 & x^2 & x+6
\end{bmatrix} ⎣ ⎡ 1 0 0 − 1 2 − 2 2 − 1 x 2 1 − 5 x + 6 ⎦ ⎤
R 2 = R 2 / 2 R_2=R_2/2 R 2 = R 2 /2
[ 1 − 1 2 1 0 1 − 1 / 2 − 5 / 2 0 − 2 x 2 x + 6 ] \begin{bmatrix}
1 & -1 & 2 & 1 \\
0 & 1 & -1/2 & -5/2 \\
0 & -2 & x^2 & x+6
\end{bmatrix} ⎣ ⎡ 1 0 0 − 1 1 − 2 2 − 1/2 x 2 1 − 5/2 x + 6 ⎦ ⎤
R 1 = R 1 + R 2 R_1=R_1+R_2 R 1 = R 1 + R 2
[ 1 0 3 / 2 − 3 / 2 0 1 − 1 / 2 − 5 / 2 0 − 2 x 2 x + 6 ] \begin{bmatrix}
1 & 0 & 3/2 & -3/2 \\
0 & 1 & -1/2 & -5/2 \\
0 & -2 & x^2 & x+6
\end{bmatrix} ⎣ ⎡ 1 0 0 0 1 − 2 3/2 − 1/2 x 2 − 3/2 − 5/2 x + 6 ⎦ ⎤
R 3 = R 3 + 2 R 2 R_3=R_3+2R_2 R 3 = R 3 + 2 R 2
[ 1 0 3 / 2 − 3 / 2 0 1 − 1 / 2 − 5 / 2 0 0 x 2 − 1 x + 1 ] \begin{bmatrix}
1 & 0 & 3/2 & -3/2 \\
0 & 1 & -1/2 & -5/2 \\
0 & 0 & x^2-1 & x+1
\end{bmatrix} ⎣ ⎡ 1 0 0 0 1 0 3/2 − 1/2 x 2 − 1 − 3/2 − 5/2 x + 1 ⎦ ⎤ I) no solution
x 2 − 1 = 0 x + 1 ≠ 0 = > x = 1 \begin{matrix}
x^2-1=0 \\
x+1\not=0
\end{matrix}=>x=1 x 2 − 1 = 0 x + 1 = 0 => x = 1
Ii) exactly one solution
x 2 − 1 ≠ 0 = > x ≠ ± 1 x^2-1\not=0=>x\not=\pm1 x 2 − 1 = 0 => x = ± 1
Iii) infinitely many solutions
x 2 − 1 = 0 x + 1 = 0 = > x = − 1 \begin{matrix}
x^2-1=0 \\
x+1=0
\end{matrix}=>x=-1 x 2 − 1 = 0 x + 1 = 0 => x = − 1
Comments