Solve x y z and t in the matrix equation below [3x t+
Given,
"\\begin{bmatrix} 3x& y-x \\\\t+\\dfrac{z}{2}& t-z\\end{bmatrix} =\\begin{bmatrix} 3& 1\\\\\\dfrac{7}{2}& 3\\end{bmatrix}"
On comparing we get-
"3x=3\\Rightarrow x=1"
Also, "y-x=1\\Rightarrow y=1+1\\Rightarrow y=2"
Also,
"t+\\dfrac{z}{2}=\\dfrac{7}{2}~~~~~~~~~~~~~-(1)"
"t-z=3~~~~~~~~-(2)"
Solving eqn.(1) and (2) and we get-
"z=\\dfrac{1}{3} , t=\\dfrac{10}{3}"
Hence Value of "x=1,y=2,z=\\dfrac{1}{3}" and "t=\\dfrac{10}{3}"
Comments
Leave a comment