Determine whether the function T: R
3 →R
3 by 𝑇 ([
𝑥
𝑦
𝑧
]) = [
𝑥 + 𝑦 − 𝑧
2𝑥𝑦
𝑥 + 𝑧 + 1
] is a linear
transformation between vector space.
The given function-
"T(\\begin{bmatrix} x\\\\y\\\\z\n\n \\end{bmatrix})=\\begin{bmatrix}x+y-z\\\\2xy\\\\x+z+1\\end{bmatrix}"
Let"\\alpha=\\begin{bmatrix} \\alpha_1\\\\\\alpha_2\\\\\\alpha_3\n\n \\end{bmatrix},\\beta=\\begin{bmatrix} \\beta_1\\\\\\beta_2\\\\\\beta_3\n\n \\end{bmatrix}\\in R^3"
"T(\\alpha+\\beta)=T(\\begin{bmatrix} \\alpha_1\\\\\\alpha_2\\\\\\alpha_3\n\n \\end{bmatrix}+\\begin{bmatrix} \\beta_1\\\\\\beta_2\\\\\\beta_3\n\n \\end{bmatrix})\n\n\\\\[9pt]\n\n =T(\\begin{bmatrix} \\alpha_1+\\beta_1\\\\\\alpha_2+\\beta_2\\\\\\alpha_3+\\beta_3\n\n \\end{bmatrix})\n\n\\\\[9pt]\n\n=\\begin{bmatrix} \\alpha_1+\\beta_1+\\alpha_2+\\beta_2-(\\alpha_3+\\beta_3)\\\\2(\\alpha_1+\\beta_1)(\\alpha_2+\\beta_2)\\\\\\alpha_1+\\beta_1+\\alpha_3+\\beta_3+1\n\n \\end{bmatrix}\\\\[9pt]\n\n\n\n=\\begin{bmatrix} \\alpha_1+\\alpha_2-\\alpha_3\\\\2\\alpha_1 \\alpha_2\\\\\\alpha_1+\\alpha_3+1\n\n \\end{bmatrix}+\\begin{bmatrix} \\beta_1+\\beta_2-\\beta_3\\\\2\\beta_1 \\beta_2+2(\\alpha_1 \\beta_2+\\beta_1 \\alpha_2)\\\\\\beta_1+\\beta_3\n\n \\end{bmatrix}\\\\[9pt]\\neq T(\\alpha)+T(\\beta)"
Since, "T(\\beta)=\\begin{bmatrix} \\alpha_1+\\alpha_2-\\alpha_3\\\\2\\alpha_1 alpha_2\\\\\\alpha_1+alpha_3+1\n\n \\end{bmatrix}\\neq\\begin{bmatrix} \\beta_1+\\beta_2-\\beta_3\\\\2\\beta_1 \\beta_2+2(\\alpha_1 \\beta_2+\\beta_1 \\alpha_2)\\\\\\beta_1+\\beta_3\n\n \\end{bmatrix}"
Therefore T is not liner transformation between vector space.
Comments
Leave a comment