Answer to Question #194951 in Linear Algebra for Muhammad Haziq

Question #194951

Determine whether the function T: R

3 →R

3 by 𝑇 ([

𝑥

𝑦

𝑧

]) = [

𝑥 + 𝑦 − 𝑧

2𝑥𝑦

𝑥 + 𝑧 + 1

] is a linear 

transformation between vector space.



1
Expert's answer
2021-05-19T17:17:35-0400

The given function-


"T(\\begin{bmatrix} x\\\\y\\\\z\n\n \\end{bmatrix})=\\begin{bmatrix}x+y-z\\\\2xy\\\\x+z+1\\end{bmatrix}"


    Let"\\alpha=\\begin{bmatrix} \\alpha_1\\\\\\alpha_2\\\\\\alpha_3\n\n \\end{bmatrix},\\beta=\\begin{bmatrix} \\beta_1\\\\\\beta_2\\\\\\beta_3\n\n \\end{bmatrix}\\in R^3"


"T(\\alpha+\\beta)=T(\\begin{bmatrix} \\alpha_1\\\\\\alpha_2\\\\\\alpha_3\n\n \\end{bmatrix}+\\begin{bmatrix} \\beta_1\\\\\\beta_2\\\\\\beta_3\n\n \\end{bmatrix})\n\n\\\\[9pt]\n\n =T(\\begin{bmatrix} \\alpha_1+\\beta_1\\\\\\alpha_2+\\beta_2\\\\\\alpha_3+\\beta_3\n\n \\end{bmatrix})\n\n\\\\[9pt]\n\n=\\begin{bmatrix} \\alpha_1+\\beta_1+\\alpha_2+\\beta_2-(\\alpha_3+\\beta_3)\\\\2(\\alpha_1+\\beta_1)(\\alpha_2+\\beta_2)\\\\\\alpha_1+\\beta_1+\\alpha_3+\\beta_3+1\n\n \\end{bmatrix}\\\\[9pt]\n\n\n\n=\\begin{bmatrix} \\alpha_1+\\alpha_2-\\alpha_3\\\\2\\alpha_1 \\alpha_2\\\\\\alpha_1+\\alpha_3+1\n\n \\end{bmatrix}+\\begin{bmatrix} \\beta_1+\\beta_2-\\beta_3\\\\2\\beta_1 \\beta_2+2(\\alpha_1 \\beta_2+\\beta_1 \\alpha_2)\\\\\\beta_1+\\beta_3\n\n \\end{bmatrix}\\\\[9pt]\\neq T(\\alpha)+T(\\beta)"




Since, "T(\\beta)=\\begin{bmatrix} \\alpha_1+\\alpha_2-\\alpha_3\\\\2\\alpha_1 alpha_2\\\\\\alpha_1+alpha_3+1\n\n \\end{bmatrix}\\neq\\begin{bmatrix} \\beta_1+\\beta_2-\\beta_3\\\\2\\beta_1 \\beta_2+2(\\alpha_1 \\beta_2+\\beta_1 \\alpha_2)\\\\\\beta_1+\\beta_3\n\n \\end{bmatrix}"


Therefore T is not liner transformation between vector space.

Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

No comments. Be the first!

Leave a comment

LATEST TUTORIALS
New on Blog
APPROVED BY CLIENTS