[ 0 2 3 4 1 1 − 3 4 5 2 − 3 10 − 6 − 7 − 4 ] \begin{bmatrix}
0 & 2 & 3 & 4 & \ \ \ 1 \\
1 & -3 &4 & 5 & \ \ \ 2 \\
-3 & 10 & -6 & -7 & \ \ \ -4 \\
\end{bmatrix} ⎣ ⎡ 0 1 − 3 2 − 3 10 3 4 − 6 4 5 − 7 1 2 − 4 ⎦ ⎤
Swap rows 1 and 2
[ 1 − 3 4 5 2 0 2 3 4 1 − 3 10 − 6 − 7 − 4 ] \begin{bmatrix}
1 & -3 & 4 & 5 & \ \ \ 2 \\
0 & 2 & 3 & 4 & \ \ \ 1 \\
-3 & 10 & -6 & -7 & \ \ \ -4 \\
\end{bmatrix} ⎣ ⎡ 1 0 − 3 − 3 2 10 4 3 − 6 5 4 − 7 2 1 − 4 ⎦ ⎤
R 3 = R 3 + 3 R 1 R_3=R_3+3R_1 R 3 = R 3 + 3 R 1
[ 1 − 3 4 5 2 0 2 3 4 1 0 1 6 8 2 ] \begin{bmatrix}
1 & -3 & 4 & 5 & \ \ \ 2 \\
0 & 2 & 3 & 4 & \ \ \ 1 \\
0 & 1 & 6 & 8 & \ \ \ 2 \\
\end{bmatrix} ⎣ ⎡ 1 0 0 − 3 2 1 4 3 6 5 4 8 2 1 2 ⎦ ⎤
R 2 = R 2 / 2 R_2=R_2/2 R 2 = R 2 /2
[ 1 − 3 4 5 2 0 1 3 / 2 2 1 / 2 0 1 6 8 2 ] \begin{bmatrix}
1 & -3 & 4 & 5 & \ \ \ 2 \\
0 & 1 & 3/2 & 2 & \ \ \ 1/2 \\
0 & 1 & 6 & 8 & \ \ \ 2 \\
\end{bmatrix} ⎣ ⎡ 1 0 0 − 3 1 1 4 3/2 6 5 2 8 2 1/2 2 ⎦ ⎤
R 1 = R 1 + 3 R 2 R_1=R_1+3R_2 R 1 = R 1 + 3 R 2
[ 1 0 17 / 2 11 7 / 2 0 1 3 / 2 2 1 / 2 0 1 6 8 2 ] \begin{bmatrix}
1 & 0 & 17/2 & 11 & \ \ \ 7/ 2 \\
0 & 1 & 3/2 & 2 & \ \ \ 1/2 \\
0 & 1 & 6 & 8 & \ \ \ 2 \\
\end{bmatrix} ⎣ ⎡ 1 0 0 0 1 1 17/2 3/2 6 11 2 8 7/2 1/2 2 ⎦ ⎤
R 3 = R 3 − R 2 R_3=R_3-R_2 R 3 = R 3 − R 2
[ 1 0 17 / 2 11 7 / 2 0 1 3 / 2 2 1 / 2 0 0 9 / 2 6 3 / 2 ] \begin{bmatrix}
1 & 0 & 17/2 & 11 & \ \ \ 7/ 2 \\
0 & 1 & 3/2 & 2 & \ \ \ 1/2 \\
0 & 0 & 9/2 & 6 & \ \ \ 3/2 \\
\end{bmatrix} ⎣ ⎡ 1 0 0 0 1 0 17/2 3/2 9/2 11 2 6 7/2 1/2 3/2 ⎦ ⎤
R 3 = 2 R 3 / 9 R_3=2R_3/9 R 3 = 2 R 3 /9
[ 1 0 17 / 2 11 7 / 2 0 1 3 / 2 2 1 / 2 0 0 1 4 / 3 1 / 3 ] \begin{bmatrix}
1 & 0 & 17/2 & 11 & \ \ \ 7/ 2 \\
0 & 1 & 3/2 & 2 & \ \ \ 1/2 \\
0 & 0 & 1 & 4/3 & \ \ \ 1/3 \\
\end{bmatrix} ⎣ ⎡ 1 0 0 0 1 0 17/2 3/2 1 11 2 4/3 7/2 1/2 1/3 ⎦ ⎤
R 1 = R 1 − 17 R 3 / 2 R_1=R_1-17R_3/2 R 1 = R 1 − 17 R 3 /2
[ 1 0 0 − 1 / 3 2 / 3 0 1 3 / 2 2 1 / 2 0 0 1 4 / 3 1 / 3 ] \begin{bmatrix}
1 & 0 & 0 & -1/3 & \ \ \ 2/ 3 \\
0 & 1 & 3/2 & 2 & \ \ \ 1/2 \\
0 & 0 & 1 & 4/3 & \ \ \ 1/3 \\
\end{bmatrix} ⎣ ⎡ 1 0 0 0 1 0 0 3/2 1 − 1/3 2 4/3 2/3 1/2 1/3 ⎦ ⎤
R 2 = R 2 − 3 R 3 / 2 R_2=R_2-3R_3/2 R 2 = R 2 − 3 R 3 /2
[ 1 0 0 − 1 / 3 2 / 3 0 1 0 0 0 0 0 1 4 / 3 1 / 3 ] \begin{bmatrix}
1 & 0 & 0 & -1/3 & \ \ \ 2/ 3 \\
0 & 1 & 0 & 0 & \ \ \ 0 \\
0 & 0 & 1 & 4/3 & \ \ \ 1/3 \\
\end{bmatrix} ⎣ ⎡ 1 0 0 0 1 0 0 0 1 − 1/3 0 4/3 2/3 0 1/3 ⎦ ⎤
x 1 − 1 3 x 4 = 2 3 x 2 = 0 x 3 + 4 3 x 4 = 1 3 \begin{matrix}
x_1-\dfrac{1}{3}x_4=\dfrac{2}{3} \\ \\
x_2=0 \\ \\
x_3+\dfrac{4}{3}x_4=\dfrac{1}{3} \\ \\
\end{matrix} x 1 − 3 1 x 4 = 3 2 x 2 = 0 x 3 + 3 4 x 4 = 3 1 Solution set:
x 1 = 2 3 + 1 3 x 4 x 2 = 0 x 3 = 1 3 − 4 3 x 4 x 4 , f r e e \begin{matrix}
x_1=\dfrac{2}{3} +\dfrac{1}{3}x_4 \\ \\
x_2=0 \\ \\
x_3=\dfrac{1}{3}-\dfrac{4}{3}x_4 \\ \\
x_4,\ free \\ \\
\end{matrix} x 1 = 3 2 + 3 1 x 4 x 2 = 0 x 3 = 3 1 − 3 4 x 4 x 4 , f ree
Comments