Using gaussian elimination method find all solutions to the following system of linear equations.
2x₂ + 3x₃ + 4x₄ = 1
x₁ - 3x₂ + 4x₃ + 5x₄ = 2
-3x₁ + 10x₂ - 6x₃ -7x₄ = -4
Swap rows 1 and 2
"R_3=R_3+3R_1"
"R_2=R_2\/2"
"R_1=R_1+3R_2"
"R_3=R_3-R_2"
"\\begin{bmatrix}\n 1 & 0 & 17\/2 & 11 & \\ \\ \\ 7\/ 2 \\\\\n 0 & 1 & 3\/2 & 2 & \\ \\ \\ 1\/2 \\\\\n0 & 0 & 9\/2 & 6 & \\ \\ \\ 3\/2 \\\\\n\\end{bmatrix}"
"R_3=2R_3\/9"
"R_1=R_1-17R_3\/2"
"R_2=R_2-3R_3\/2"
"\\begin{bmatrix}\n 1 & 0 & 0 & -1\/3 & \\ \\ \\ 2\/ 3 \\\\\n 0 & 1 & 0 & 0 & \\ \\ \\ 0 \\\\\n0 & 0 & 1 & 4\/3 & \\ \\ \\ 1\/3 \\\\\n\\end{bmatrix}"Solution set:
"\\begin{matrix}\n x_1=\\dfrac{2}{3} +\\dfrac{1}{3}x_4 \\\\ \\\\\n x_2=0 \\\\ \\\\\n x_3=\\dfrac{1}{3}-\\dfrac{4}{3}x_4 \\\\ \\\\\nx_4,\\ free \\\\ \\\\\n\\end{matrix}"
Comments
Leave a comment