Let A = [ 0 1 2
1 0 3
4 -3 8 ]
If A is an invertible matrix, then show that.
det (A-1) = 1/det ( A )
"A^{-1}=\\frac{A^T_*}{|A|}"
"|A|=4-2\\cdot3=-2"
Minor matrix: each element "m_{ij}" is the determinant of 2x2 matrix, if we remove i-th row and j-th column in matrix "A".
"M=\\begin{pmatrix}\n 9 & -4&-3 \\\\\n 14 & -8&-4\\\\\n 3&-2&-1 \\\\\n\\end{pmatrix}"
Matrix of cofactors: change signs of "m_{12},m_{21},m_{23},m_{32}."
"A_*=\\begin{pmatrix}\n 9 & 4&-3 \\\\\n -14 & -8&4\\\\\n 3&2&-1 \\\\\n\\end{pmatrix}"
Transpose matrix of cofactors:
"A^T_*=\\begin{pmatrix}\n 9 & -14&3 \\\\\n -4 & -8&2\\\\\n -3&4&1 \\\\\n\\end{pmatrix}"
"A^{-1}=-\\frac{1}{2}\\begin{pmatrix}\n 9 & -14&3 \\\\\n -4 & -8&2\\\\\n -3&4&1 \\\\\n\\end{pmatrix}"
"|A^{-1}|=4.5\\cdot4-7\\cdot0.5-1.5\\cdot10=-0.5=1\/|A|"
Comments
Leave a comment