Question #194542

Let A = [ 0 1 2

1 0 3

4 -3 8 ]

If A is an invertible matrix, then show that.

det (A-1) = 1/det ( A )




1
Expert's answer
2021-05-19T12:57:12-0400

A1=ATAA^{-1}=\frac{A^T_*}{|A|}

A=423=2|A|=4-2\cdot3=-2

Minor matrix: each element mijm_{ij} is the determinant of 2x2 matrix, if we remove i-th row and j-th column in matrix AA.

M=(9431484321)M=\begin{pmatrix} 9 & -4&-3 \\ 14 & -8&-4\\ 3&-2&-1 \\ \end{pmatrix}

Matrix of cofactors: change signs of m12,m21,m23,m32.m_{12},m_{21},m_{23},m_{32}.

A=(9431484321)A_*=\begin{pmatrix} 9 & 4&-3 \\ -14 & -8&4\\ 3&2&-1 \\ \end{pmatrix}

Transpose matrix of cofactors:

AT=(9143482341)A^T_*=\begin{pmatrix} 9 & -14&3 \\ -4 & -8&2\\ -3&4&1 \\ \end{pmatrix}

A1=12(9143482341)A^{-1}=-\frac{1}{2}\begin{pmatrix} 9 & -14&3 \\ -4 & -8&2\\ -3&4&1 \\ \end{pmatrix}

A1=4.5470.51.510=0.5=1/A|A^{-1}|=4.5\cdot4-7\cdot0.5-1.5\cdot10=-0.5=1/|A|


Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

No comments. Be the first!
LATEST TUTORIALS
APPROVED BY CLIENTS