Find the vector equation of the plane determined by the points (-1,-2,1),(1,0,1) and (1,-1,1). Also check whether (1/2,1/2,1/2) lies on it
∣x−(−1)y−(−2)z−11−(−1)0−(−2)1−11−(−1)−1−(−2)1−1∣=0\begin{vmatrix} x-(-1) & y-(-2) & z-1 \\ 1-(-1) & 0-(-2) & 1-1 \\ 1-(-1) & -1-(-2) & 1-1 \end{vmatrix}=0∣∣x−(−1)1−(−1)1−(−1)y−(−2)0−(−2)−1−(−2)z−11−11−1∣∣=0
∣x+1y+2z−1220210∣=0\begin{vmatrix} x+1 & y+2 & z-1\\ 2 & 2 & 0\\ 2 & 1 & 0 \end{vmatrix}=0∣∣x+122y+221z−100∣∣=0
(z−1)[2−4]=0(z-1)[2-4]=0(z−1)[2−4]=0
z=1z=1z=1
r⃗.(0i⃗+0j⃗+1k⃗)=1\vec r.(0\vec i+0\vec j+1\vec k)=1r.(0i+0j+1k)=1
Put the point (x = 1/2. y = 1/2, z = 1/2) on the equation of plane i.e
0x+0y+z=10x+0y+z=10x+0y+z=1
12=1\dfrac{1}{2}\cancel=121=1
Therefore, the point (1/2,1/2,1/2) does not lie on the plane
Need a fast expert's response?
and get a quick answer at the best price
for any assignment or question with DETAILED EXPLANATIONS!
Comments