Answer to Question #196275 in Linear Algebra for anuj

Question #196275

Use Cramer’s rule to solve for y without solving for x, z and w in the system 2w + x + y + z = 3 −8w − 7x − 3y + 5z = −3 w + 4x + y + z = 6 w + 3x + 7y − z = 1 


1
Expert's answer
2021-05-21T15:47:40-0400
"\\begin{matrix}\n 2w + x + y + z = 3 \\\\\n \u22128w \u2212 7x \u2212 3y + 5z = \u22123 \\\\\n w + 4x + y + z = 6 \\\\\nw + 3x + 7y \u2212 z = 1\n\\end{matrix}"

Write the matrix for the system and check that the determinant is not equal zero.


"A=\\begin{bmatrix}\n 2 & 1 & 1 & 1 \\\\\n -8 & -7 & -3 & 5 \\\\\n1 & 4 & 1 & 1 \\\\\n1 & 3 & 7 & -1 \\\\\n\\end{bmatrix}"

"\\det A=\\begin{vmatrix}\n 2 & 1 & 1 & 1 \\\\\n -8 & -7 & -3 & 5 \\\\\n 1 & 4 & 1 & 1 \\\\\n 1 & 3 & 7 & -1 \\\\\n\\end{vmatrix}"

"=2\\begin{vmatrix}\n -7 & -3 & 5 \\\\\n 4 & 1 & 1 \\\\\n 3 & 7 & -1 \\\\\n\\end{vmatrix}-\\begin{vmatrix}\n -8 & -3 & 5 \\\\\n 1 & 1 & 1 \\\\\n 1 & 7 & -1 \\\\\n\\end{vmatrix}"

"+\\begin{vmatrix}\n -8 & -7 & 5 \\\\\n 1 & 4 & 1 \\\\\n 1 & 3 & -1 \\\\\n\\end{vmatrix}-\\begin{vmatrix}\n -8 & -7 & -3 \\\\\n 1 & 4 & 1 \\\\\n 1 & 3 & 7 \\\\\n\\end{vmatrix}"


"\\begin{vmatrix}\n -7 & -3 & 5 \\\\\n 4 & 1 & 1 \\\\\n 3 & 7 & -1 \\\\\n\\end{vmatrix}=-4\\begin{vmatrix}\n -3 & 5 \\\\\n 7 & -1 \\\\\n\\end{vmatrix}+\\begin{vmatrix}\n -7 & 5 \\\\\n 3 & -1 \\\\\n\\end{vmatrix}"

"-\\begin{vmatrix}\n -7 & -3 \\\\\n 3 &7 \\\\\n\\end{vmatrix}=-4(-32)+(-8)-(-40)=160"


"\\begin{vmatrix}\n -8 & -3 & 5 \\\\\n 1 & 1 & 1 \\\\\n 1 & 7 & -1 \\\\\n\\end{vmatrix}=-\\begin{vmatrix}\n -3 & 5 \\\\\n 7 & -1 \\\\\n\\end{vmatrix}+\\begin{vmatrix}\n -8 & 5 \\\\\n 1 & -1 \\\\\n\\end{vmatrix}"

"-\\begin{vmatrix}\n -8 & -3 \\\\\n 1 &7 \\\\\n\\end{vmatrix}=-(-32)+(3)-(-53)=88"




"\\begin{vmatrix}\n -8 & -7 & 5 \\\\\n 1 & 4 & 1 \\\\\n 1 & 3 & -1 \\\\\n\\end{vmatrix}=-8\\begin{vmatrix}\n 4 & 1 \\\\\n 3 & -1 \\\\\n\\end{vmatrix}-\\begin{vmatrix}\n -7 & 5 \\\\\n 3 & -1\\\\\n\\end{vmatrix}"

"+\\begin{vmatrix}\n -7 & 5 \\\\\n 4 &1 \\\\\n\\end{vmatrix}=-8(-7)-(-8)+(-27)=37"




"\\begin{vmatrix}\n -8 & -7 & -3 \\\\\n 1 & 4 & 1 \\\\\n 1 & 3 & 7 \\\\\n\\end{vmatrix}=-8\\begin{vmatrix}\n 4 & 1 \\\\\n 3 & 7 \\\\\n\\end{vmatrix}-\\begin{vmatrix}\n -7 & -3 \\\\\n 3 & 7 \\\\\n\\end{vmatrix}"

"+\\begin{vmatrix}\n -7 & -3\\\\\n 4 & 1 \\\\\n\\end{vmatrix}=-8(25)-(-40)+(5)=-155""\\det A=2(160)-88+37-(-155)"

"\\det A=424\\not=0"



"B=\\begin{bmatrix}\n 2 & 1 & 3 & 1 \\\\\n -8 & -7 & -3 & 5 \\\\\n1 & 4 & 6 & 1 \\\\\n1 & 3 & 1 & -1 \\\\\n\\end{bmatrix}"

"\\det B=\\begin{vmatrix}\n 2 & 1 & 3 & 1 \\\\\n -8 & -7 & -3 & 5 \\\\\n 1 & 4 & 6 & 1 \\\\\n 1 & 3 & 1 & -1 \\\\\n\\end{vmatrix}"

"=2\\begin{vmatrix}\n -7 & -3 & 5 \\\\\n 4 & 6 & 1 \\\\\n 3 & 1 & -1 \\\\\n\\end{vmatrix}-\\begin{vmatrix}\n -8 & -3 & 5 \\\\\n 1 & 6 & 1 \\\\\n 1 & 1 & -1 \\\\\n\\end{vmatrix}"

"+3\\begin{vmatrix}\n -8 & -7 & 5 \\\\\n 1 & 4 & 1 \\\\\n 1 & 3 & -1 \\\\\n\\end{vmatrix}-\\begin{vmatrix}\n -8 & -7 & -3 \\\\\n 1 & 4 & 6 \\\\\n 1 & 3 & 1 \\\\\n\\end{vmatrix}"




"\\begin{vmatrix}\n -7 & -3 & 5 \\\\\n 4 & 6 & 1 \\\\\n 3 & 1 & -1 \\\\\n\\end{vmatrix}=-4\\begin{vmatrix}\n -3 & 5 \\\\\n 1 & -1 \\\\\n\\end{vmatrix}+6\\begin{vmatrix}\n -7 & 5 \\\\\n 3 & -1 \\\\\n\\end{vmatrix}"

"-\\begin{vmatrix}\n -7 & -3 \\\\\n 3 &1 \\\\\n\\end{vmatrix}=-4(-2)+6(-8)-(2)=-42"




"\\begin{vmatrix}\n -8 & -3 & 5 \\\\\n 1 & 6 & 1 \\\\\n 1 & 1 & -1 \\\\\n\\end{vmatrix}=\\begin{vmatrix}\n -3 & 5 \\\\\n 6 & 1 \\\\\n\\end{vmatrix}-\\begin{vmatrix}\n -8 & 5 \\\\\n 1 & 1 \\\\\n\\end{vmatrix}"

"-\\begin{vmatrix}\n -8 & -3 \\\\\n 1 & 6 \\\\\n\\end{vmatrix}=-33-(-13)-(-45)=25"




"\\begin{vmatrix}\n -8 & -7 & 5 \\\\\n 1 & 4 & 1 \\\\\n 1 & 3 & -1 \\\\\n\\end{vmatrix}=-8\\begin{vmatrix}\n 4 & 1 \\\\\n 3 & -1 \\\\\n\\end{vmatrix}-\\begin{vmatrix}\n -7 & 5 \\\\\n 3 & -1\\\\\n\\end{vmatrix}"

"+\\begin{vmatrix}\n -7 & 5 \\\\\n 4 &1 \\\\\n\\end{vmatrix}=-8(-7)-(-8)+(-27)=37"




"\\begin{vmatrix}\n -8 & -7 & -3 \\\\\n 1 & 4 & 6 \\\\\n 1 & 3 & 1 \\\\\n\\end{vmatrix}=-8\\begin{vmatrix}\n 4 & 6 \\\\\n 3 & 1 \\\\\n\\end{vmatrix}-\\begin{vmatrix}\n -7 & -3 \\\\\n 3 & 1 \\\\\n\\end{vmatrix}""+\\begin{vmatrix}\n -7 & -3\\\\\n 4 & 6 \\\\\n\\end{vmatrix}=-8(-14)-(2)-(30)=80"




"\\det B=2(-42)-25+3(37)-80=-78"

"y=\\dfrac{\\det B}{\\det A}=\\dfrac{-78}{424}=-\\dfrac{39}{212}"



"y=-\\dfrac{39}{212}"



Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

No comments. Be the first!

Leave a comment

LATEST TUTORIALS
New on Blog
APPROVED BY CLIENTS