Use Cramer’s rule to solve for y without solving for x, z and w in the system 2w + x + y + z = 3 −8w − 7x − 3y + 5z = −3 w + 4x + y + z = 6 w + 3x + 7y − z = 1
Write the matrix for the system and check that the determinant is not equal zero.
"\\det A=\\begin{vmatrix}\n 2 & 1 & 1 & 1 \\\\\n -8 & -7 & -3 & 5 \\\\\n 1 & 4 & 1 & 1 \\\\\n 1 & 3 & 7 & -1 \\\\\n\\end{vmatrix}"
"=2\\begin{vmatrix}\n -7 & -3 & 5 \\\\\n 4 & 1 & 1 \\\\\n 3 & 7 & -1 \\\\\n\\end{vmatrix}-\\begin{vmatrix}\n -8 & -3 & 5 \\\\\n 1 & 1 & 1 \\\\\n 1 & 7 & -1 \\\\\n\\end{vmatrix}"
"+\\begin{vmatrix}\n -8 & -7 & 5 \\\\\n 1 & 4 & 1 \\\\\n 1 & 3 & -1 \\\\\n\\end{vmatrix}-\\begin{vmatrix}\n -8 & -7 & -3 \\\\\n 1 & 4 & 1 \\\\\n 1 & 3 & 7 \\\\\n\\end{vmatrix}"
"-\\begin{vmatrix}\n -7 & -3 \\\\\n 3 &7 \\\\\n\\end{vmatrix}=-4(-32)+(-8)-(-40)=160"
"-\\begin{vmatrix}\n -8 & -3 \\\\\n 1 &7 \\\\\n\\end{vmatrix}=-(-32)+(3)-(-53)=88"
"+\\begin{vmatrix}\n -7 & 5 \\\\\n 4 &1 \\\\\n\\end{vmatrix}=-8(-7)-(-8)+(-27)=37"
"+\\begin{vmatrix}\n -7 & -3\\\\\n 4 & 1 \\\\\n\\end{vmatrix}=-8(25)-(-40)+(5)=-155""\\det A=2(160)-88+37-(-155)"
"\\det A=424\\not=0"
"\\det B=\\begin{vmatrix}\n 2 & 1 & 3 & 1 \\\\\n -8 & -7 & -3 & 5 \\\\\n 1 & 4 & 6 & 1 \\\\\n 1 & 3 & 1 & -1 \\\\\n\\end{vmatrix}"
"=2\\begin{vmatrix}\n -7 & -3 & 5 \\\\\n 4 & 6 & 1 \\\\\n 3 & 1 & -1 \\\\\n\\end{vmatrix}-\\begin{vmatrix}\n -8 & -3 & 5 \\\\\n 1 & 6 & 1 \\\\\n 1 & 1 & -1 \\\\\n\\end{vmatrix}"
"+3\\begin{vmatrix}\n -8 & -7 & 5 \\\\\n 1 & 4 & 1 \\\\\n 1 & 3 & -1 \\\\\n\\end{vmatrix}-\\begin{vmatrix}\n -8 & -7 & -3 \\\\\n 1 & 4 & 6 \\\\\n 1 & 3 & 1 \\\\\n\\end{vmatrix}"
"-\\begin{vmatrix}\n -7 & -3 \\\\\n 3 &1 \\\\\n\\end{vmatrix}=-4(-2)+6(-8)-(2)=-42"
"-\\begin{vmatrix}\n -8 & -3 \\\\\n 1 & 6 \\\\\n\\end{vmatrix}=-33-(-13)-(-45)=25"
"+\\begin{vmatrix}\n -7 & 5 \\\\\n 4 &1 \\\\\n\\end{vmatrix}=-8(-7)-(-8)+(-27)=37"
"y=\\dfrac{\\det B}{\\det A}=\\dfrac{-78}{424}=-\\dfrac{39}{212}"
"y=-\\dfrac{39}{212}"
Comments
Leave a comment