Use the cofactor expansion to determine
{{2000}{3120}{2-504}{1303}}
∣200031202−5041303∣=2∣120−504303∣=2(−2)∣−5433∣=−4(−15−12)=108.\begin{vmatrix} 2 & 0&0&0 \\ 3 &1&2&0\\ 2&-5&0&4\\ 1&3&0&3\end{vmatrix}=2\begin{vmatrix} 1 & 2&0 \\ -5 & 0&4\\ 3&0&3 \end{vmatrix}=2(-2)\begin{vmatrix} -5 & 4 \\ 3 & 3 \end{vmatrix}=-4(-15-12)=108.∣∣232101−5302000043∣∣=2∣∣1−53200043∣∣=2(−2)∣∣−5343∣∣=−4(−15−12)=108.
Need a fast expert's response?
and get a quick answer at the best price
for any assignment or question with DETAILED EXPLANATIONS!
Comments