Change the following equations in to augmented matrix
x-y+2z=1
3x-y+5z=-2
4x+2y+(x2-8)z=(x+2)
And determine values of x where:-
There is no solution
And where there is exactly one solution
And where there infinitely many solutions
Augmented matrix
"R_2=R_2-3R_1"
"\\begin{bmatrix}\n 1 & -1 & 2 & 1 \\\\\n 0 & 2 & -1 & -5 \\\\\n4 & 2 & x^2-8 & x+2\n\\end{bmatrix}""R_3=R_3-4R_1"
"\\begin{bmatrix}\n 1 & -1 & 2 & 1 \\\\\n 0 & 2 & -1 & -5 \\\\\n0 & 6 & x^2-16 & x-2\n\\end{bmatrix}""R_2=R_2\/2"
"\\begin{bmatrix}\n 1 & -1 & 2 & 1 \\\\\n 0 & 1 & -1\/2 & -5\/2 \\\\\n0 &6 & x^2-16 & x-2\n\\end{bmatrix}""R_1=R_1+R_2"
"\\begin{bmatrix}\n 1 & 0 & 3\/2 & -3\/2 \\\\\n 0 & 1 & -1\/2 & -5\/2 \\\\\n0 & 6 & x^2-16 & x-2\n\\end{bmatrix}""R_3=R_3-6R_2"
"\\begin{bmatrix}\n 1 & 0 & 3\/2 & -3\/2 \\\\\n 0 & 1 & -1\/2 & -5\/2 \\\\\n0 & 0 & x^2-13 & x+13\n\\end{bmatrix}"I) no solution
Ii) exactly one solution
Iii) infinitely many solutions
Comments
Leave a comment