Consider the matrices A = −2 7 1
3 4 1
8 1 5 ,
B = 8 1 5
3 4 1
−2 7 1 ,
C = −2 7 1
3 4 1
2 −7 3 .
Find elementary matrices E1, E2 and E3 such that
(5.1) E1A = B,
(5.2) E1B = A,
(5.3) E2A = C,
(5.4) E3C = A.
"A=\\begin{pmatrix}\n \u22122 & 7 & 1 \\\\\n 3 & 4 & 1 \\\\\n 8 & 1 & 5 \n\\end{pmatrix} \nB=\\begin{pmatrix}\n 8 & 1 & 5 \\\\\n 3 & 4 & 1 \\\\\n\u22122 & 7 & 1 \n\\end{pmatrix}\nC=\\begin{pmatrix}\n \u22122 & 7 & 1\\\\\n3 & 4 & 1\\\\\n2 & \u22127 & 3 \n\\end{pmatrix}"
"1)~E_1\\cdot A=B ~~~ \\Rightarrow ~~~ E_1=B\\cdot A^{-1} ~~~ \\Rightarrow~~~ E_1=\\begin{pmatrix}\n 0 & 0 & 1 \\\\ 0 & 1 & 0 \\\\ 1 & 0 & 0\n\\end{pmatrix}"
"2)~E_1\\cdot B=A ~~~ \\Rightarrow ~~~ E_1=A \\cdot B^{-1} ~~~ \\Rightarrow~~~ E_1=\\begin{pmatrix}\n 0 & 0 & 1 \\\\ 0 & 1 & 0 \\\\ 1 & 0 & 0\n\\end{pmatrix}"
"3)~E_2\\cdot A=C ~~~ \\Rightarrow ~~~ E_2=C\\cdot A^{-1} ~~~ \\Rightarrow~~~ E_2=\\begin{pmatrix}\n 1 & 0 & 0 \\\\ 0 & 1 & 0 \\\\ 0 & -2 & 1\n\\end{pmatrix}"
"4)~E_3\\cdot C=A ~~~ \\Rightarrow ~~~ E_3=A \\cdot C^{-1} ~~~ \\Rightarrow~~~ E_3=\\begin{pmatrix}\n 1 & 0 & 0 \\\\ 0 & 1 & 0 \\\\ 0 & 2 & 1\n\\end{pmatrix}"
As here you can find inverse matrices and multiply matrices with a help of online calculators which are available easily and free.
Comments
Leave a comment