Given matrix is-
A = [ 1 2 3 2 0 1 2 3 4 ] A=\begin{bmatrix} 1&2&3\\2&0&1\\2&3&4\end{bmatrix} A = ⎣ ⎡ 1 2 2 2 0 3 3 1 4 ⎦ ⎤
Minors are
M 11 = ∣ 0 1 3 4 ∣ = − 3 M 12 = ∣ 2 1 2 4 ∣ = 6 M 13 = ∣ 2 0 2 3 ∣ = 6 M 21 = ∣ 2 3 3 4 ∣ = − 1 M 22 = ∣ 1 3 2 4 ∣ = − 2 M 23 = ∣ 1 2 2 3 ∣ = − 1 M 31 = ∣ 2 3 0 1 ∣ = 2 M 32 = ∣ 1 3 2 1 ∣ = − 5 M 33 = ∣ 1 2 2 0 ∣ = − 4 M_{11}=\begin{vmatrix} 0&1\\3&4\end{vmatrix}=-3\\[9pt]M_{12}=\begin{vmatrix} 2&1\\2&4\end{vmatrix}=6\\[9pt]M_{13}=\begin{vmatrix} 2&0\\2&3\end{vmatrix}=6\\[9pt]M_{21}=\begin{vmatrix} 2&3\\3&4\end{vmatrix}=-1\\[9pt]M_{22}=\begin{vmatrix} 1&3\\2&4\end{vmatrix}=-2\\[9pt]M_{23}=\begin{vmatrix} 1&2\\2&3\end{vmatrix}=-1\\[9pt]M_{31}=\begin{vmatrix} 2&3\\0&1\end{vmatrix}=2\\[9pt]M_{32}=\begin{vmatrix} 1&3\\2&1\end{vmatrix}=-5\\[9pt]M_{33}=\begin{vmatrix} 1&2\\2&0\end{vmatrix}=-4\\ M 11 = ∣ ∣ 0 3 1 4 ∣ ∣ = − 3 M 12 = ∣ ∣ 2 2 1 4 ∣ ∣ = 6 M 13 = ∣ ∣ 2 2 0 3 ∣ ∣ = 6 M 21 = ∣ ∣ 2 3 3 4 ∣ ∣ = − 1 M 22 = ∣ ∣ 1 2 3 4 ∣ ∣ = − 2 M 23 = ∣ ∣ 1 2 2 3 ∣ ∣ = − 1 M 31 = ∣ ∣ 2 0 3 1 ∣ ∣ = 2 M 32 = ∣ ∣ 1 2 3 1 ∣ ∣ = − 5 M 33 = ∣ ∣ 1 2 2 0 ∣ ∣ = − 4
Cofactor is-
C i j = ( − 1 ) i + j M i j C_{ij}=(-1)^{i+j}M_{ij} C ij = ( − 1 ) i + j M ij
=[ − 3 − 6 6 1 − 2 1 2 5 − 4 ] \begin{bmatrix} -3&-6&6\\1&-2&1\\2&5&-4\end{bmatrix} ⎣ ⎡ − 3 1 2 − 6 − 2 5 6 1 − 4 ⎦ ⎤
Comments