A matrix is in row echelon form (ref) when it satisfies the following conditions.
The first non-zero element in each row, called the leading entry, is 1.
Each leading entry is in a column to the right of the leading entry in the previous row.
Rows with all zero elements, if any, are below rows having a non-zero element.
4.1 Yes. The matrix
( 1 2 − 2 0 1 2 0 0 1 ) \begin{pmatrix}
1 & 2 &-2 \\
0 & 1 & 2 \\
0 & 0 & 1
\end{pmatrix} ⎝ ⎛ 1 0 0 2 1 0 − 2 2 1 ⎠ ⎞
is in row echelon form, since matrix satisfies all of the requirements for a row echelon matrix.
But the matrix is not in reduced row echelon matrix.
R 1 = R 1 − 2 R 2 R_1=R_1-2R_2 R 1 = R 1 − 2 R 2
( 1 0 − 6 0 1 2 0 0 1 ) \begin{pmatrix}
1 & 0 & -6 \\
0 & 1 & 2 \\
0 & 0 & 1
\end{pmatrix} ⎝ ⎛ 1 0 0 0 1 0 − 6 2 1 ⎠ ⎞
R 1 = R 1 + 6 R 3 R_1=R_1+6R_3 R 1 = R 1 + 6 R 3
( 1 0 0 0 1 2 0 0 1 ) \begin{pmatrix}
1 & 0 & 0 \\
0 & 1 & 2 \\
0 & 0 & 1
\end{pmatrix} ⎝ ⎛ 1 0 0 0 1 0 0 2 1 ⎠ ⎞
R 2 = R 2 − 2 R 3 R_2=R_2-2R_3 R 2 = R 2 − 2 R 3
( 1 0 0 0 1 0 0 0 1 ) \begin{pmatrix}
1 & 0 & 0 \\
0 & 1 & 0 \\
0 & 0 & 1
\end{pmatrix} ⎝ ⎛ 1 0 0 0 1 0 0 0 1 ⎠ ⎞
4.2 Yes. The matrix
( 1 2 − 2 0 1 2 0 0 1 ) \begin{pmatrix}
1 & 2 &-2 \\
0 & 1 & 2 \\
0 & 0 & 1
\end{pmatrix} ⎝ ⎛ 1 0 0 2 1 0 − 2 2 1 ⎠ ⎞
is in row echelon form, since matrix satisfies all of the requirements for a row echelon matrix.
But the matrix is not in reduced row echelon matrix.
R 1 = R 1 − 2 R 2 R_1=R_1-2R_2 R 1 = R 1 − 2 R 2
( 1 0 − 6 0 1 2 0 0 1 ) \begin{pmatrix}
1 & 0 & -6 \\
0 & 1 & 2 \\
0 & 0 & 1
\end{pmatrix} ⎝ ⎛ 1 0 0 0 1 0 − 6 2 1 ⎠ ⎞ R 1 = R 1 + 6 R 3 R_1=R_1+6R_3 R 1 = R 1 + 6 R 3
( 1 0 0 0 1 2 0 0 1 ) \begin{pmatrix}
1 & 0 & 0 \\
0 & 1 & 2 \\
0 & 0 & 1
\end{pmatrix} ⎝ ⎛ 1 0 0 0 1 0 0 2 1 ⎠ ⎞ R 2 = R 2 − 2 R 3 R_2=R_2-2R_3 R 2 = R 2 − 2 R 3
( 1 0 0 0 1 0 0 0 1 ) \begin{pmatrix}
1 & 0 & 0 \\
0 & 1 & 0 \\
0 & 0 & 1
\end{pmatrix} ⎝ ⎛ 1 0 0 0 1 0 0 0 1 ⎠ ⎞
Comments