"Cosy dy\/dx" = "Sin^2x Cosx"
Given,
"cosy\\cdot \\dfrac{dy}{dx}=sin^2x\\times cosx\\\\\\ \\\\cosy\\times dy=sin^2x\\times cosxdx"
Now, Integrating both sides
"\\int cosydy=\\int sin^2xcosxdx"
"Let \\ I_1=\\int sin^2xcosxdx\\\\"
Substitute sinx = t
then cosxdx = dt
"I_1=\\int t^2dt\\\\I_1=\\frac{t^3}{3}\\\\"
Now, "I_1= \\dfrac{1}{3}sin^3x"
So,
"\\int cosydy=\\int sin^2xcosxdx"
"siny =\\dfrac{1}{3}sin^3x +C\\\\\\boxed{y=sin^{-1}(\\frac{1}{3}sin^3x+C)}"
Comments
Leave a comment